期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Effect of Cryogenic Treatment on Microstructure and Tribological Property Evolution of Electron Beam Melted Ti6Al4V
1
作者 黄西娜 MA Xiaowen XU Tianyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1010-1017,共8页
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi... Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V. 展开更多
关键词 electron beam melting(EBM) cryogenic treatment MICROSTRUCTURE vickers hardness tribological property
下载PDF
Effect of deep cryogenic treatment on the microstructural,mechanical and ballistic properties of AA7075-T6 aluminum alloy 被引量:1
2
作者 S.Dharani kumar U.Magarajan +1 位作者 Saurabh S Kumar Rodríguez-Millan M 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期101-110,共10页
The study focused on investigating the effect of Deep Cryogenic Treatment(DCT)on the mechanical and ballistic properties of AA7075-T6 aluminum alloy.The microstructure,microhardness,tensile strength,and impact strengt... The study focused on investigating the effect of Deep Cryogenic Treatment(DCT)on the mechanical and ballistic properties of AA7075-T6 aluminum alloy.The microstructure,microhardness,tensile strength,and impact strength of the Base Material(BM)and DCT-treated 7075 samples were analyzed through metallographic analysis and mechanical tests.The microstructure of the DCT-treated 7075 samples revealed fine grains and a distribution of secondary phase particles.The tensile strength,impact strength,and microhardness of DCT-treated samples increased by 7.41%,4%,and 9.68%,respectively,compared to the BM samples.The fractography analysis of the tensile samples showed cleavage facets,microvoids,and dimples in both the samples.The ballistic behavior of the BM and DCT target plates were studied by impacting hard steel core projectiles at a velocity of 750±10 m/s.The target plates failed due to petaling and ductile hole enlargement,and the depth of penetration(DOP)of the DCT target was less than that of the BM target,indicating a higher ballistic resistance.The post-ballistic microstructure examination of the target plates showed the formation of an Adiabatic Shear Band(ASB)without any cracks.It was concluded that the DCT treatment improved the mechanical and ballistic properties of the aluminum alloy due to grain refinement and high dislocation density. 展开更多
关键词 Deep cryogenic treatment AA7075-T6 Mechanical properties BALLISTIC Adiabatic shear band
下载PDF
Tensile behavior of 3104 aluminum alloy processed by homogenization and cryogenic treatment 被引量:9
3
作者 张文达 白培康 +3 位作者 杨晶 徐宏 党惊知 杜振民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2453-2458,共6页
The mechanical properties of 3104 aluminum alloy processed by different combinations of cryogenic and homogenization treatments were studied. The 3104 aluminum alloy processed by the cryogenic treatment followed by ho... The mechanical properties of 3104 aluminum alloy processed by different combinations of cryogenic and homogenization treatments were studied. The 3104 aluminum alloy processed by the cryogenic treatment followed by homogenization exhibited an enhancement in the tensile strength, yield strength, and elongation by 29%, 41%, and 11%, respectively, as compared with a sample processed by the conventional homogenization treatment. The stress-strain curve of the sample processed by the homogenization treatment exhibited the Portevin-Le Chatelier effect, whereas the sample processed by the cryogenic treatment did not. Further, the cryogenic treatment could accelerate the precipitation of secondary phase particles for the sample processed by a deep cryogenic treatment, followed by a homogenization treatment, which enhanced the dislocation pinning effect of the solvent atoms and thus improved the critical strain. 展开更多
关键词 DEFORMATION HOMOGENIZATION cryogenic treatment MICROSTRUCTURE Portevin–Le Chatelier effect
下载PDF
Effects of deep cryogenic treatment on microstructure and properties of WC-11Co cemented carbides with various carbon contents 被引量:9
4
作者 谢晨辉 黄继武 +1 位作者 唐云锋 谷立宁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期3023-3028,共6页
The effects of deep cryogenic treatment on the microstructure and properties of WC-11 Co cemented carbides with various carbon contents were investigated.The results show that after deep cryogenic treatment,WC grains ... The effects of deep cryogenic treatment on the microstructure and properties of WC-11 Co cemented carbides with various carbon contents were investigated.The results show that after deep cryogenic treatment,WC grains are refined into triangular prism with sound edges via the process of spheroidization,but WC grain size has no evident change compared with that of untreated alloys.The phase transformation of Co phase from α-Co(FCC) to ε-Co(HCP) is observed in the cryogenically treated alloys,which is attributed to the decrease of W solubility in the binder(Co).Deep cryogenic treatment enhances the hardness and bending strength of the alloys,while it has no significant effects on the density and cobalt magnetic performance. 展开更多
关键词 WC-Co cemented carbide deep cryogenic treatment phase transformation MICROSTRUCTURE PROPERTIES
下载PDF
FEM simulation and experimental verification of temperature field and phase transformation in deep cryogenic treatment 被引量:4
5
作者 黎军顽 汤磊磊 +1 位作者 李绍宏 吴晓春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2421-2430,共10页
Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was esta... Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure. 展开更多
关键词 deep cryogenic treatment boiling heat transfer coefficient finite element method phase transformation cold work tool steel
下载PDF
Effects of cryogenic treatment on the thermal physical properties of Cu_(76.12) Al_(23.88) alloy 被引量:13
6
作者 WANG Ping LU Wei +2 位作者 WANG Yuehui LIU Jianhua ZHANG Ruijun 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期644-649,共6页
The thermal diffusion coefficient, heat capacity, thermal conductivity, and thermal expansion coefficient of Cu76.12Al23.88 alloy before and after cryogenic treatment in the heating temperature range of 25℃ to 600℃ ... The thermal diffusion coefficient, heat capacity, thermal conductivity, and thermal expansion coefficient of Cu76.12Al23.88 alloy before and after cryogenic treatment in the heating temperature range of 25℃ to 600℃ were measured by thermal constant tester and thermal expansion instrument. The effects of cryogenic treatment on the thermal physical properties of CU76,12A123,88 alloy were investigated by comparing the variation of the thermal parameters before and after cryogenic treatment. The results show that the variation trend of the thermal diffusion coefficient, heat capacity, thermal conductivity, and thermal expansion coefficient of CU76.12Al23.88 alloy after cryogenic treatment was the same as before. The cryogenic treatment can increase the thermal diffusion coefficient, thermal conductivity, and thermal expansion coeffi- cient of Cu76.12Al23.88 alloy and decrease its heat capacity. The maximum difference in the thermal diffusion coefficient between the before and after cryogenic treatment appeared at 400℃. Similarly, thermal conductivity was observed at 200℃. 展开更多
关键词 Cu76.12Al23 88 alloy cryogenic treatment thermal diffusion coefficient thermal expansion coefficient
下载PDF
Effect of Cryogenic Treatment on Property of 14Cr2Mn2V High Chromium Cast Iron Subjected to Subcritical Treatment 被引量:8
7
作者 LIU Hao-huai WANG Jun +3 位作者 YANG Hong-shan SHEN Bao-luo GAO She-ji HUANG Si-jiu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第6期43-48,共6页
Effect of cryogenic treatment on the microstructure, hardening behavior and abrasion resistance of 14Cr2Mn2V high chromium cast iron (HCCI) subjected to subcritical treatment was investigated. The results show that ... Effect of cryogenic treatment on the microstructure, hardening behavior and abrasion resistance of 14Cr2Mn2V high chromium cast iron (HCCI) subjected to subcritical treatment was investigated. The results show that cryogenic treatment after subcritical treatment can obviously improve the hardness and abrasion resistance of HCCI because abundant retained austenite is transformed into martensite and fine secondary carbides E(Fe, Cr)23 C6 ] precipitate. The amount of martensite and precipitated secondary carbide in HCCI experiencing subcritical treatment followed by cryogenic treatment was more than that experiencing the subcritical treatment followed by air cooling. When the abrasion resistance of HCCI reaches the maximum, its microstructure contains about 15 % retained austenite. Cryogenic treatment can further reduce the austenite content but the retained austenite cannot be transformed in to martensite completely. 展开更多
关键词 high chromium cast iron cryogenic treatment subcritical treatment martensite transformation abrasion resistance
下载PDF
Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy 被引量:6
8
作者 Chun-mei Li Nan-pu Cheng +2 位作者 Zhi-qian Chen Ning Guo Su-min Zeng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第1期68-77,共10页
An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mech... An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mechanical properties of the Al alloy. Both Guinier-Preston (GP) zones and a metastableη′phase were observed by high-resolution transmission electron microscopy. The phenomenon of the second precipitation of the GP zones in samples subjected to DCT after being aged was observed. The viability of this phase transfor-mation was also demonstrated by first-principles calculations. 展开更多
关键词 aluminum alloys cryogenic treatment phase transformation MICROSTRUCTURE
下载PDF
Effects of cryogenic treatment on mechanical properties of extruded Mg-Gd-Y-Zr(Mn) alloys 被引量:7
9
作者 熊创贤 张新明 +3 位作者 邓运来 肖阳 邓桢桢 陈部湘 《Journal of Central South University of Technology》 EI 2007年第3期305-309,共5页
The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), ... The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and energy dispersive X-ray spectroscopy (EDS). The results show that the mechanical properties of both alloys are improved greatly during the in situ tensile test by soaking the samples in liquid nitrogen for 10 min. The ultimate tensile strength, yield tensile strength and elongation of cryogenic treated magnesium alloy added with zirconium or manganese are largely elevated. And remarkable microstructure change is observed in both alloys by cryogenic treatment. There are a large number of twins,rod-like, tree-like and chrysanthemum-like precipitated phases in the microstructures and the fracture surfaces exhibit the characteristics of ductile rupture when they are observed at room temperature. 展开更多
关键词 magnesium alloy cryogenic treatment mechanical property microstructure
下载PDF
Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel 被引量:3
10
作者 Kamran Amini Amin Akhbarizadeh Sirus Javadpour 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期795-799,共5页
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffracti... The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-fiat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples. 展开更多
关键词 cryogenic treatment tool steel nano-sized carbides wear resistance HARDNESS AUSTENITE
下载PDF
Numerical simulation of deep cryogenic treatment electrode tip temperature for spot welding aluminum alloy 被引量:4
11
作者 吴志生 胡敏英 刘翠荣 《China Welding》 EI CAS 2006年第4期67-70,共4页
Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum allo... Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum alloy improve. The specific resistivity of the deep cryogenic treatment electrodes is tested and experimental results show that specific resistivity is decreased sharply. The temperature field and the influence of deep cryogenic treatment on the electrode tip temperature during spot welding aluminium alloy is studied by numerical simulation method with the software ANSYS. The axisymmetric finite element model of mechanical, thermal and electrical coupled analysis of spot welding process is developed. The numerical simulation results show that the influence of deep cryogenic treatment on electrode tip temperature is very large. 展开更多
关键词 spot welding ELECTRODE deep cryogenic treatment electrode tip temperature SIMULATION
下载PDF
Microstructure and mechanical properties of AZ91 magnesium alloy subject to deep cryogenic treatments 被引量:3
12
作者 Gui-rong Li Hong-ming Wang +3 位作者 Yun Cai Yu-tao Zhao Jun-jie Wang Simon P.A. Gill 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第9期896-901,共6页
AZ91 magnesium alloy was subjected to a deep cryogenic treatment. X-ray diffraction (XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) methods were utilized to characterize... AZ91 magnesium alloy was subjected to a deep cryogenic treatment. X-ray diffraction (XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) methods were utilized to characterize the composition and microstructure of the treated samples. The results show that after two cryogenic treatments, the quantity of the precipitate hardening β phase increases, and the sizes of the precipitates are refined from 8-10μm to 2-4μm. This is expected to be due to the decreased solubility of aluminum in the matrix at low temperature and the significant plastic deformation owing to internal differences in thermal contraction between phases and grains. The polycrystalline matrix is also noticeably refined, with the sizes of the subsequent nanocrystalline grains in the range of 50-100 nm. High density dislocations are observed to pile up at the grain boundaries, inducing the dynamic recrystallization of the microstructure, leading to the generation of a nanocrystalline grain structure. After two deep cryogenic treatments, the tensile strength and elongation are found to be substantially increased, rising from 243 MPa and 4.4% of as-cast state to 299 MPa and 5.1%. 展开更多
关键词 magnesium alloys cryogenic treatment MICROSTRUCTURE mechanical properties
下载PDF
Effect of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding 被引量:3
13
作者 WANG Xiaofeng SHAN Ping HU Shengsun WU Zhisheng WANG Xibao 《Rare Metals》 SCIE EI CAS CSCD 2005年第4期392-396,共5页
The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic alm... The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic almighty testing machine and X-ray stress analyzer. Tensile fracture surfaces of the alloy were characterized by scanning electronic microscope (SEM) with energy dispersive X-ray spectroscopy (EDS). The results showed that, after deep cryogenic treatment, σb and σ0.2 increased 23 MPa and 21 MPa respectively, the wear rate of the alloy exhibited the trend of decrease with the decreasing temperature and increasing time of deep cryogenic treatment, and the surface residual stress of the alloy was partially eliminated by deep cryogenic treatment. 展开更多
关键词 Cu-Cr-Zr alloy deep cryogenic treatment mechanical properties spot welding electrode
下载PDF
Effect of deep cryogenic treatment on the properties of 80CrMo12 5 tool steel 被引量:2
14
作者 Kamran Amini Said Nategh +1 位作者 Ali Shafyei Ahmad Rezaeian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第1期30-37,共8页
The effect of deep cryogenic treatment on the mechanical properties of 80CrMo 12 5 tool steel was investigated. Moreover, the effects of stabilization (holding at room temperature for some periods before deep cryogen... The effect of deep cryogenic treatment on the mechanical properties of 80CrMo 12 5 tool steel was investigated. Moreover, the effects of stabilization (holding at room temperature for some periods before deep cryogenic treatment) and tempering before deep cryogenic treatment were studied. The results show that deep cryogenic treatment can eliminate the retained austenite, making a better carbide distribu- tion and a higher carbide amount. As a result, a remarkable improvement in wear resistance of cryogenically treated specimens is observed. Moreover, the ultimate tensile strength increases, and the toughness of the sample decreases. It is also found that both stabilization and tem- pering before deep cryogenic treatment decrease the wear resistance, hardness, and carbides homogeneity compared to the deep cryogeni- cally treated samples. It is concluded that deep cryogenic treatment should be performed without any delay on samples after quenching to reach the highest wear resistance and hardness. 展开更多
关键词 tool steel cryogenic treatment STABILIZATION wear resistance tensile strength HARDNESS carbides
下载PDF
Effect of cryogenic and aging treatments on low-energy impact behaviour of Ti-6Al-4V alloy 被引量:2
15
作者 Y. PEKBEY K. ASLANTAS Y. PEKBEY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期514-526,共13页
The objective of this study is to examine the effects of cryogenic and aging treatments on the impact strength andmechanical properties of Ti?6Al?4V alloy.To accomplish that objective,cryogenic treatment(CT),aging tre... The objective of this study is to examine the effects of cryogenic and aging treatments on the impact strength andmechanical properties of Ti?6Al?4V alloy.To accomplish that objective,cryogenic treatment(CT),aging treatment(AT)andcryogenic treatment followed by aging treatment(CAT)were conducted on Ti?6Al?4V alloy.Impact tests were performed onheat-treated and untreated samples using different impactor nose geometries(hemispherical,60°and90°conical)to determine theeffect of impactor nose geometry on the damage characteristic.The findings showed that energy absorption increased and areas ofdamage decreased as a result of heat treatment in all treated samples.The highest energy absorption was observed in the CATsamples,due to the increase in energy absorption,the smallest damaged area occurred in the CAT sample,and the largestdeformation was seen in the untreated samples.Additionally,it was seen that the damaged area and deflection were stronglydependent on impactor nose geometry.The maximum deflection and narrowest deformation area were seen with60o conical nosegeometry.The deformation area increased with increasing impactor nose angle. 展开更多
关键词 Ti.6Al.4V alloy cryogenic treatment aging treatment low-energy impact test impact damage impactor nose geometry
下载PDF
Influence of soaking time in deep cryogenic treatment on the microstructure and mechanical properties of low-alloy medium-carbon HY-TUF steel 被引量:1
16
作者 Ahmad Zare S.R.Hosseini 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第6期658-666,共9页
The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distributio... The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distribution mapping by electron backscatter diffraction show that the deep cryogenic process causes a decrease in the content of retained austenite and an increase in the volume fraction of η-carbide with increasing soaking time up to 48 h. The decrease in the content of retained austenite from ~1.23vol% to 0.48vol% suggests an isothermal martensitic transformation at 77 K. The η-type precipitates formed in deep cryogenic-treated martensite over 48 h have the Hirotsu and Nagakura orientation relation with the martensitic matrix. Furthermore, a high coherency between η-carbide and the martensitic matrix is observed by high-resolution transmission electron microscopy. The variations in macrohardness, yield strength, ultimate tensile strength, and ductility with soaking time in the deep cryogenic process show a peak/plateau trend. 展开更多
关键词 low alloy steel medium carbon steel cryogenic treatment microstructure mechanical properties fractography
下载PDF
Influence of cryogenic treatment on the wear characteristics of 100Cr6 bearing steel
17
作者 R.Sri Siva D.Mohan Lal +1 位作者 P.Kesavan Nair M.Arockia Jaswin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第1期46-51,共6页
A series of reciprocating wear tests were performed on the deep cryogenically treated and conventionally heat-treated samples of 100Cr6 bearing steel to study the wear resistance. The worn surfaces as well as the wear... A series of reciprocating wear tests were performed on the deep cryogenically treated and conventionally heat-treated samples of 100Cr6 bearing steel to study the wear resistance. The worn surfaces as well as the wear debris were analyzed by scanning electron microscopy. The improvement in wear resistance of the deep cryogenically treated samples ranges from 49% to 52%. This significant improvement in wear resistance can be attributed to finer carbide precipitation in the tempered martensitie matrix and the transformation of retained aus- tenite into martensite. X-ray diffraction analysis shows that the volume fraction of retained austenite in the conventionally heat-treated samples is 14% and that of the deep cryogenically treated samples is only 3%. 展开更多
关键词 bearing steel cryogenic treatment wear resistance carbides MARTENSITE
下载PDF
Effect of Cryogenic and QPQ Compound Treatment on the Microstructures and Performance of High Speed Steel
18
作者 LUO Defu LI Shen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期184-189,共6页
China’s High-speed steel cutting tools hold a considerable share in the global market. However, the overproduction of low-end HSS tools causes serious resource waste and low efficiency, which has become one of the ma... China’s High-speed steel cutting tools hold a considerable share in the global market. However, the overproduction of low-end HSS tools causes serious resource waste and low efficiency, which has become one of the major problems in the tool industry in China. So a new Surface Modification technology is developed, which can make the low-end HSS tools into the high-end ones. On the analysis of the mechanism of cryogenic and quenching-polish-quenching(QPQ), the cryogenic and QPQ compound treatment are studied by using ?8 HSS(M2) drills. The nitriding layer and the base of the drill bit are Studied and analyzed, and the mechanism of compound treatment is discussed by the technological parameters adjustment and the combination test of cryogenic, nitrogen, tempering procedures, and several analysis methods such as the optics metallographic microscope, the scanning electronic microscope (SEM), X-ray diffraction and micro hardness. The cutting test is done on the drills by cryogenic treatment, QPQ treatment and cryogenic and QPQ compound treatment separately. The results indicates that the cutting life of HSS (M2) drill can be increased dramatically by cryogenic and QPQ compound treatment. 展开更多
关键词 high-speed steel (HSS) cryogenic treatment quenching-polish-quenching (QPQ)
下载PDF
Microstructure of deep cryogenic treatment electrode for resistance spot welding of aluminium alloy
19
作者 吴志生 高珊 +3 位作者 赵菲 陈晓燕 阴旭 王晓峰 《China Welding》 EI CAS 2010年第4期49-53,共5页
Cr-Zr-Cu alloy electrodes for resistance spot welding of aluminium alloy are treated by deep cryogenic treatment processes. The Cr-Zr-Cu alloy electrodes are analyzed by transmission electron microscope( TEM ) , and... Cr-Zr-Cu alloy electrodes for resistance spot welding of aluminium alloy are treated by deep cryogenic treatment processes. The Cr-Zr-Cu alloy electrodes are analyzed by transmission electron microscope( TEM ) , and results show that the common dislocation in Cr-Zr-Cu alloy electrodes is changed into the dislocation loop, and twin crystal is found after deep cryogenic treatment. The parallel twin crystal band is observed by selected electron diffraction(SED) and the twin crystal plane is marked as ( 111 ). The Cr-Zr-Cu alloy electrode is studied by X-ray diffraction( XRD ) and results show that the intensity of diffraction peak is obviously changed after deep cryogenic treatment, and the grain rotates to preferred orientation. The Cr-Zr- Cu alloy electrode is studied by positron annihilation technique (PAT) and results indicate that the amount of vacancy defects is less than that of Cr-Zr-Cu alloy before deep cryogenic treatment. The main elements in Cr-Zr-Cu alloy are studied with X- ray photoelctron spectroscopy( XPS ) and the intensity of spectrum peak is increased after deep cryogenic treatment. 展开更多
关键词 MICROSTRUCTURE deep cryogenic treatment copper alloy ELECTRODE resistance spot welding
下载PDF
Effects of laser shock processing,solid solution and aging,and cryogenic treatments on microstructure and thermal fatigue performance of ZCuAl_(10)Fe_(3)Mn_(2)alloy
20
作者 Guang-lei Liu Yu-hao Cao +5 位作者 Lu-xin Shi Meng-jie Zhang Zhi-qiang Ye Ling Zhao Jian-zhong Zhou Nai-chao Si 《China Foundry》 SCIE CAS 2021年第2期155-162,共8页
The materials used in variable temperature conditions are required to have excellent thermal fatigue performance.The effects of laser shock processing(LSP),solid solution and aging treatment(T6),and cryogenic treatmen... The materials used in variable temperature conditions are required to have excellent thermal fatigue performance.The effects of laser shock processing(LSP),solid solution and aging treatment(T6),and cryogenic treatment(CT)on both microstructure and thermal fatigue performance of ZCuAl_(10)Fe_(3)Mn_(2) alloys were studied.Microstructure and crack morphology were then examined by scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS).The result showed that,after being subjected to the combination treatment of T6+CT+LSP,the optimal mechanical properties and thermal fatigue performance were obtained for the ZCuAl_(10)Fe_(3)Mn_(2) alloy with the tensile strength,hardness,and elongation of 720 MPa,300.16 HB,and 16%,respectively,and the thermal fatigue life could reach 7,100 cycles when the crack length was 0.1 mm.Moreover,the ZCuAl_(10)Fe_(3)Mn_(2) after combination treatment shows high resistance to oxidation,good adhesion between the matrix and grain boundaries,and dramatically reduced growth rate of crack.During thermal fatigue testing,under the combined action of thermal and alternating stresses,the microstructure around the sample notch oxidized and became loose and porous,which then converted to micro-cracks.Fatigue crack expanded along the grain boundary in the early stage.In the later stage,under the cyclic stress accumulation,the oxidized microstructure separated from the matrix,and the fatigue crack expanded in both intergranular and transgranular ways.The main crack was thick,and the path was meandering. 展开更多
关键词 ZCuAl_(10)Fe_(3)Mn_(2)alloy laser shock processing T6 treatment cryogenic treatment MICROSTRUCTURE thermal fatigue crack initiation and propagation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部