In order to evaluate the tendency of mechanical properties degrudation due to weld-ing and other processing in materials used for supporting coils in super conducting rnaguets utilized in thermonuclear jusion reactore...In order to evaluate the tendency of mechanical properties degrudation due to weld-ing and other processing in materials used for supporting coils in super conducting rnaguets utilized in thermonuclear jusion reactore, a small punch (SP) test was used.This test, which was originally developed to study irradiation damage using miniatursized specimens was performed at 77 and 4 K for solution treated and sensitized JN1 austenitic stainless steel, a candidate cryogenic structural material. The area under the load-deflection curve up to the maximum applied load in SP test was defined as the SP enerpy, to characterize the resistance to fracture. Although solution treated material exhibited ductile fracture mode with high SP enerpy, embrittlement behavior due to sensitization at 650-800°for 1-5 h was shown clearlg by SP test with brittle intergranular fracture and decreased SP enerpy. Comparison of the results obtained by SP test with those by fracture toughness test showed the usefulness of SP test for evaluation of sensitization induced embrittlement at cryogenic temperature. The re-sults obtained in this study can be very usefol in predicting the degradation due to welding and other processing in cryogenic materials.展开更多
SEM and Field emitting TEM-EDAX were used to investigate the fracture surface of series impact specimens and the grain boundary chemistries of VIM(vacuum-inductionmelted) Fe-38 Mn austenitic alloy before and after ESR...SEM and Field emitting TEM-EDAX were used to investigate the fracture surface of series impact specimens and the grain boundary chemistries of VIM(vacuum-inductionmelted) Fe-38 Mn austenitic alloy before and after ESR(electroslag remelting,).The quantity and the size of inclusions were also examined.The results show that the VIM Fe-38 Mn austenitinic alloy water-quenched from 1 100 C undergoes an obvious ductile-to-brittle transition,and the impact work at ambient temperature is 242 J,the corresponding fracture surface exhibits a dimple character.However,the impact work at 77 K of VIM alloy is only 25 J and the fracture mode is IGF(intergranular fracture).After ESR,the impact work at ambient temperature is 320 J and the fracture surface exhibits a character of "volcano lava"(meaning excellent toughness);The impact work at 77 K is up to 300 J and the fracture mode is micro void coalescence mixed with quasi-cleavage.The segregation of Mn is not found in all specimens,but the segregation of S is observed,and the S segregation is decreased after ESR.The examined results of inclusions show that ESR reduces the quantity and improves the morphology of inclusions.From the above results it can be seen that the cryogenic IGF of VIM Fe-38 Mn austenitic alloy is related to the S segregation at grain boundary.After ESR the decrease in the quantity and size of inclusion results in the increase of the impact work at ambient temperature,while the restriction of IGF is related to the decrease in the total level,and hence in the grain boundary segregation of S.展开更多
This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-...This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 55OC for 30rain can effectively inhibit the cryogenic intergranular brittleness of the post- weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal.展开更多
文摘In order to evaluate the tendency of mechanical properties degrudation due to weld-ing and other processing in materials used for supporting coils in super conducting rnaguets utilized in thermonuclear jusion reactore, a small punch (SP) test was used.This test, which was originally developed to study irradiation damage using miniatursized specimens was performed at 77 and 4 K for solution treated and sensitized JN1 austenitic stainless steel, a candidate cryogenic structural material. The area under the load-deflection curve up to the maximum applied load in SP test was defined as the SP enerpy, to characterize the resistance to fracture. Although solution treated material exhibited ductile fracture mode with high SP enerpy, embrittlement behavior due to sensitization at 650-800°for 1-5 h was shown clearlg by SP test with brittle intergranular fracture and decreased SP enerpy. Comparison of the results obtained by SP test with those by fracture toughness test showed the usefulness of SP test for evaluation of sensitization induced embrittlement at cryogenic temperature. The re-sults obtained in this study can be very usefol in predicting the degradation due to welding and other processing in cryogenic materials.
基金Project Sponsored by National Natural Science Foundation(59771001)
文摘SEM and Field emitting TEM-EDAX were used to investigate the fracture surface of series impact specimens and the grain boundary chemistries of VIM(vacuum-inductionmelted) Fe-38 Mn austenitic alloy before and after ESR(electroslag remelting,).The quantity and the size of inclusions were also examined.The results show that the VIM Fe-38 Mn austenitinic alloy water-quenched from 1 100 C undergoes an obvious ductile-to-brittle transition,and the impact work at ambient temperature is 242 J,the corresponding fracture surface exhibits a dimple character.However,the impact work at 77 K of VIM alloy is only 25 J and the fracture mode is IGF(intergranular fracture).After ESR,the impact work at ambient temperature is 320 J and the fracture surface exhibits a character of "volcano lava"(meaning excellent toughness);The impact work at 77 K is up to 300 J and the fracture mode is micro void coalescence mixed with quasi-cleavage.The segregation of Mn is not found in all specimens,but the segregation of S is observed,and the S segregation is decreased after ESR.The examined results of inclusions show that ESR reduces the quantity and improves the morphology of inclusions.From the above results it can be seen that the cryogenic IGF of VIM Fe-38 Mn austenitic alloy is related to the S segregation at grain boundary.After ESR the decrease in the quantity and size of inclusion results in the increase of the impact work at ambient temperature,while the restriction of IGF is related to the decrease in the total level,and hence in the grain boundary segregation of S.
基金Financial support by State Key Lab of Advanced Welding and Joining,Harbin Institute of Technology
文摘This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 55OC for 30rain can effectively inhibit the cryogenic intergranular brittleness of the post- weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal.