期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Performance Comparison of Hyper-V and KVM for Cryptographic Tasks in Cloud Computing
1
作者 Nader Abdel Karim Osama A.Khashan +4 位作者 Waleed K.Abdulraheem Moutaz Alazab Hasan Kanaker Mahmoud E.Farfoura Mohammad Alshinwan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2023-2045,共23页
As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy i... As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy in the cloud environment.A hypervisor is a virtualization software used in cloud hosting to divide and allocate resources on various pieces of hardware.The choice of hypervisor can significantly impact the performance of cryptographic operations in the cloud environment.An important issue that must be carefully examined is that no hypervisor is completely superior in terms of performance;Each hypervisor should be examined to meet specific needs.The main objective of this study is to provide accurate results to compare the performance of Hyper-V and Kernel-based Virtual Machine(KVM)while implementing different cryptographic algorithms to guide cloud service providers and end users in choosing the most suitable hypervisor for their cryptographic needs.This study evaluated the efficiency of two hypervisors,Hyper-V and KVM,in implementing six cryptographic algorithms:Rivest,Shamir,Adleman(RSA),Advanced Encryption Standard(AES),Triple Data Encryption Standard(TripleDES),Carlisle Adams and Stafford Tavares(CAST-128),BLOWFISH,and TwoFish.The study’s findings show that KVM outperforms Hyper-V,with 12.2%less Central Processing Unit(CPU)use and 12.95%less time overall for encryption and decryption operations with various file sizes.The study’s findings emphasize how crucial it is to pick a hypervisor that is appropriate for cryptographic needs in a cloud environment,which could assist both cloud service providers and end users.Future research may focus more on how various hypervisors perform while handling cryptographic workloads. 展开更多
关键词 Cloud computing performance VIRTUALIZATION hypervisors HYPER-V KVM cryptographic algorithm
下载PDF
An Interoperability Cross-Block Chain Framework for Secure Transactions in IoT
2
作者 N.Anand Kumar A.Grace Selvarani P.Vivekanandan 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1077-1090,共14页
The purpose of this research is to deal with effective block chain framework for secure transactions.The rate of effective data transactions and the interoperability of the ledger are the two major obstacles involved ... The purpose of this research is to deal with effective block chain framework for secure transactions.The rate of effective data transactions and the interoperability of the ledger are the two major obstacles involved in Blockchain and to tackle this issue,Cross-Chain based Transaction(CCT)is introduced.Traditional industries have been restructured by the introduction of Internet of Things(IoT)to become smart industries through the feature of data-driven decision-making.Still,there are a few limitations,like decentralization,security vulnerabilities,poor interoperability,as well as privacy concerns in IoTs.To overcome this limitation,Blockchain has been employed to assure a safer transaction process,especially in asset exchanges.In recent decades,scalable local ledgers implement Blockchains,simultaneously sustaining peer validations of transactions which can be at local or global levels.From the single Hyperledger-based blockchains system,the CCT takes the transaction amid various chains.In addition,the most significant factor for this registration processing strategy is the Signature to ensure security.The application of the Quantum cryptographic algorithm amplifies the proposed Hyperledger-based blockchains,to strengthen the safety of the process.The key has been determined by restricting the number of transactions that reach the global Blockchain using the quantum-based hash function and accomplished by scalable local ledgers,and peer validations of transactions at local and global levels without any issues.The rate of transaction processing for entire peers has enhanced with the ancillary aid of the proposed solution,as it includes the procedure of load distribution.Without any boosted enhancement,the recommended solution utilizes the current transaction strategy,and also,it’s aimed at scalability,resource conservation,and interoperability.The experimental results of the system have been evaluated using the metrics like block weight,ledger memory,the usage of the central processing unit,and the communication overhead. 展开更多
关键词 Internet of Things(IoT) scalability blockchain INTEROPERABILITY security ledger size transaction rate cross-chain based transaction(CCT) quantum cryptographic algorithm
下载PDF
LBC-IoT: Lightweight Block Cipher for IoT Constraint Devices 被引量:1
3
作者 Rabie A.Ramadan Bassam W.Aboshosha +3 位作者 Kusum Yadav Ibrahim M.Alseadoon Munawar J.Kashout Mohamed Elhoseny 《Computers, Materials & Continua》 SCIE EI 2021年第6期3563-3579,共17页
With the new era of the Internet of Things(IoT)technology,many devices with limited resources are utilized.Those devices are susceptible to a signicant number of new malware and other risks emerging rapidly.One of the... With the new era of the Internet of Things(IoT)technology,many devices with limited resources are utilized.Those devices are susceptible to a signicant number of new malware and other risks emerging rapidly.One of the most appropriate methods for securing those IoT applications is cryptographic algorithms,as cryptography masks information by eliminating the risk of collecting any meaningful information patterns.This ensures that all data communications are private,accurate,authenticated,authorized,or nonrepudiated.Since conventional cryptographic algorithms have been developed specically for devices with limited resources;however,it turns out that such algorithms are not ideal for IoT restricted devices with their current conguration.Therefore,lightweight block ciphers are gaining popularity to meet the requirements of low-power and constrained devices.A new ultra-lightweight secret-key block-enciphering algorithm named“LBC-IoT”is proposed in this paper.The proposed block length is 32-bit supporting key lengths of 80-bit,and it is mainly based on the Feistel structure.Energy-efcient cryptographic features in“LBC-IoT”include the use of simple functions(shift,XOR)and small rigid substitution boxes(4-bit-S-boxes).Besides,it is immune to different types of attacks such as linear,differential,and side-channel as well as exible in terms of implementation.Moreover,LBC-IoT achieves reasonable performance in both hardware and software compared to other recent algorithms.LBC-IoT’s hardware implementation results are very promising(smallest ever area“548”GE)and competitive with today’s leading lightweight ciphers.LBC-IoT is also ideally suited for ultra-restricted devices such as RFID tags. 展开更多
关键词 SECURITY internet of things cryptographic algorithms block cipher lightweight algorithms
下载PDF
An Effective and Secure Quality Assurance System for a Computer Science Program 被引量:1
4
作者 Mohammad Alkhatib 《Computer Systems Science & Engineering》 SCIE EI 2022年第6期975-995,共21页
Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components ... Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components ofthe quality assurance system (QAS). Current assessment methods suffer deficiencies related to accuracy and reliability, and they lack well-organized processes forcontinuous improvement planning. Moreover, the absence of automation, andintegration in QA processes forms a major obstacle towards developing efficientquality system. There is a pressing need to adopt security protocols that providerequired security services to safeguard the valuable information processed byQAS as well. This research proposes an effective methodology for LOs assessment and continuous improvement processes. The proposed approach ensuresmore accurate and reliable LOs assessment results and provides systematic wayfor utilizing those results in the continuous quality improvement. This systematicand well-specified QA processes were then utilized to model and implement automated and secure QAS that efficiently performs quality-related processes. Theproposed system adopts two security protocols that provide confidentiality, integrity, and authentication for quality data and reports. The security protocols avoidthe source repudiation, which is important in the quality reporting system. This isachieved through implementing powerful cryptographic algorithms. The QASenables efficient data collection and processing required for analysis and interpretation. It also prepares for the development of datasets that can be used in futureartificial intelligence (AI) researches to support decision making and improve thequality of academic programs. The proposed approach is implemented in a successful real case study for a computer science program. The current study servesscientific programs struggling to achieve academic accreditation, and gives rise tofully automating and integrating the QA processes and adopting modern AI andsecurity technologies to develop effective QAS. 展开更多
关键词 Quality assurance information security cryptographic algorithms education programs
下载PDF
TESLA-Based Authentication for BeiDou Civil Navigation Message 被引量:3
5
作者 Zhijun Wu Yun Zhang +1 位作者 Liang Liu Meng Yue 《China Communications》 SCIE CSCD 2020年第11期194-218,共25页
Due to the civil BeiDou navigation system is open,unauthenticated,and non-encrypted,civilian BeiDou navigation signals may have great security loopholes during transmission or reception.The main security loophole here... Due to the civil BeiDou navigation system is open,unauthenticated,and non-encrypted,civilian BeiDou navigation signals may have great security loopholes during transmission or reception.The main security loophole here is spoofing attacks.Spoofing attacks make the positioning or timing results of BeiDou civilian receivers wrong.Such errors may cause a series of security problems,which lays a serious hidden danger for Bei-Dou satellite information security.This article proposes an anti-spoofing method for BeiDou navigation system based on the combination of SM commercial cryptographic algorithm and Timed Efficient Stream Loss-tolerant Authentication(TESLA)for spoofing attacks.In this solution,we use the SM3 algorithm to generate a TESLA key chain with time information,and then use the key in the key chain to generate the message authentication code for the BeiDou D2 navigation message.The message authentication code is inserted into a reserved bit of the D2 navigation message.In addition,this solution uses the SM2 algorithm to protect and encrypt time information in the TESLA key chain to prevent key replay attacks in TESLA.The experimental results tested on the experimental platform built in this paper show that this scheme reduces the possibility of the BeiDou navigation system being deceived and enhances the safety of the BeiDou navigation system. 展开更多
关键词 BeiDou navigation system SM commercial cryptographic algorithm TESLA message authentication code D2 navigation message
下载PDF
S-box:six-dimensional compound hyperchaotic map and artificial bee colony algorithm 被引量:1
6
作者 Ye Tian Zhimao Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期232-241,共10页
Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes th... Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria. 展开更多
关键词 substitution boxes(S-boxes) multiple cryptographic criteria six-dimensional compound hyperchaotic map artificial bee colony algorithm(ABC).
下载PDF
FPGA based unified architecture for public key and private key cryptosystems 被引量:1
7
作者 Yi WANG Renfa LI 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第3期307-316,共10页
Recently, security in embedded system arises attentions because of modern electronic devices need cau- tiously either exchange or communicate with the sensitive data. Although security is classical research topic in... Recently, security in embedded system arises attentions because of modern electronic devices need cau- tiously either exchange or communicate with the sensitive data. Although security is classical research topic in world- wide communication, the researchers still face the problems of how to deal with these resource constraint devices and en- hance the features of assurance and certification. Therefore, some computations of cryptographic algorithms are built on hardware platforms, such as field program gate arrays (FPGAs). The commonly used cryptographic algorithms for digital signature algorithm (DSA) are rivest-shamir-adleman (RSA) and elliptic curve cryptosystems (ECC) which based on the presumed difficulty of factoring large integers and the algebraic structure of elliptic curves over finite fields. Usu- ally, RSA is computed over GF(p), and ECC is computed over GF(p) or GF(2P). Moreover, embedded applications need advance encryption standard (AES) algorithms to pro- cess encryption and decryption procedures. In order to reuse the hardware resources and meet the trade-off between area and performance, we proposed a new triple functional arith- metic unit for computing high radix RSA and ECC operations over GF(p) and GF(2P), which also can be extended to support AES operations. A new high radix signed digital (SD) adder has been proposed to eliminate the carry propagations over GF(p). The proposed unified design took up 28.7% less hardware resources than implementing RSA, ECC, and AES individually, and the experimental results show that our proposed architecture can achieve 141.8 MHz using approxi- mately 5.5k CLBs on Virtex-5 FPGA. 展开更多
关键词 AES RSA ECC signed-digit number FPGA cryptographic algorithms high radix arithmetic unit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部