In an era characterized by digital pervasiveness and rapidly expanding datasets,ensuring the integrity and reliability of information is paramount.As cyber threats evolve in complexity,traditional cryptographic method...In an era characterized by digital pervasiveness and rapidly expanding datasets,ensuring the integrity and reliability of information is paramount.As cyber threats evolve in complexity,traditional cryptographic methods face increasingly sophisticated challenges.This article initiates an exploration into these challenges,focusing on key exchanges(encompassing their variety and subtleties),scalability,and the time metrics associated with various cryptographic processes.We propose a novel cryptographic approach underpinned by theoretical frameworks and practical engineering.Central to this approach is a thorough analysis of the interplay between Confidentiality and Integrity,foundational pillars of information security.Our method employs a phased strategy,beginning with a detailed examination of traditional cryptographic processes,including Elliptic Curve Diffie-Hellman(ECDH)key exchanges.We also delve into encrypt/decrypt paradigms,signature generation modes,and the hashes used for Message Authentication Codes(MACs).Each process is rigorously evaluated for performance and reliability.To gain a comprehensive understanding,a meticulously designed simulation was conducted,revealing the strengths and potential improvement areas of various techniques.Notably,our cryptographic protocol achieved a confidentiality metric of 9.13 in comprehensive simulation runs,marking a significant advancement over existing methods.Furthermore,with integrity metrics at 9.35,the protocol’s resilience is further affirmed.These metrics,derived from stringent testing,underscore the protocol’s efficacy in enhancing data security.展开更多
Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof ...Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.展开更多
Wireless Sensor Networks (WSNs) are resource-constrained networks in which sensor nodes operate in an aggressive and uncontrolled environment and interact with sensitive data. Traffic aggregated by sensor nodes is sus...Wireless Sensor Networks (WSNs) are resource-constrained networks in which sensor nodes operate in an aggressive and uncontrolled environment and interact with sensitive data. Traffic aggregated by sensor nodes is susceptible to attacks and, due to the nature of WSNs, security mechanisms used in wired networks and other types of wireless networks are not suitable for WSNs. In this paper, we propose a mechanism to assure information security against security attacks and particularly node capturing attacks. We propose a cluster security management protocol, called Cryptographic Checksum Clustering Security Management (C3SM), to provide an efficient decentralized security management for hierarchal networks. In C3SM, every cluster selects dynamically and alternately a node as a cluster security manager (CSM) which distributes a periodic shared secrete key for all nodes in the cluster. The cluster head, then, authenticates identity of the nodes and derive a unique pairwise key for each node in the cluster. C3SM provides sufficient security regardless how many nodes are compromised, and achieves high connectivity with low memory cost and low energy consumption. Compared to existing protocols, our protocol provides stronger resilience against node capture with lower key storage overhead.展开更多
In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cry...In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cryptographic system in managing token, but it doesn't utilize any cryptographic primitives on the routing messages. In PNCSR, each node is fair. Local neighboring nodes collaboratively monitor each other and sustain each other. It also uses a novel credit strategy which additively increases the token lifetime each time a node renews its token. We also analyze the storage, computation, and communication overhead of PNCSR, and provide a simple yet meaningful overhead comparison. Finally, the simulation results show the effectiveness of PNCSR in various situations.展开更多
Current delegation mechanism of grid security infrastructure (GSI) can't satisfy the requirement of dynamic, distributed and practical security in grid virtual organization. To improve this situation, a TC-enabled ...Current delegation mechanism of grid security infrastructure (GSI) can't satisfy the requirement of dynamic, distributed and practical security in grid virtual organization. To improve this situation, a TC-enabled GSI is discussed in this paper. With TC-enabled GSI, a practical delegation solution is proposed in this paper through enforcing fine granularity policy over distributed platforms with the emerging trusted computing technologies. Here trusted platform module is treated as a tamper-resistance module to improve grid security infrastructure. With the implement of Project Daonity, it is demonstrated that the solution could gain dynamic and distributed security in grid environment.展开更多
A security kernel architeclrne built on trusted computing platform in thelight of thinking about trusted computing is presented According to this architecture, a newsecurity module TCB (Trusted Computing Base) is adde...A security kernel architeclrne built on trusted computing platform in thelight of thinking about trusted computing is presented According to this architecture, a newsecurity module TCB (Trusted Computing Base) is added to the operation system kerneland twooperation interface modes are provided for the sake of self-protection. The security kernel isdivided into two parts and trusted mechanism Is separated from security functionality. Ihe TCBmodule implements the trusted mechanism such as measurement and attestation, while the othercomponents of security kernel provide security functionality based on these mechanisms. Thisarchitecture takes full advantage of functions provided by trusted platform and clearly defines thesecurity perimeter of TCB so as to assure stlf-securily from architcetmal vision. We also presentfunction description of TCB and discuss the strengths and limitations comparing with other relatedresearches.展开更多
This paper proposes a C/S system model for K-Java and PDA named Net-Wireless.It is a discussion and proposal on information security and solutions for R-Java handsets and PDAsin wireless network. It also explains the ...This paper proposes a C/S system model for K-Java and PDA named Net-Wireless.It is a discussion and proposal on information security and solutions for R-Java handsets and PDAsin wireless network. It also explains the scheme which between client security module and serversecurity module. Also, We have developed a Security Server and a K-Java encryption module fore-commerce system and other trade systems.展开更多
Securing large corporate communication networks has become an increasingly difficult task. Sensitive information routinely leaves the company network boundaries and falls into the hands of unauthorized users. New tech...Securing large corporate communication networks has become an increasingly difficult task. Sensitive information routinely leaves the company network boundaries and falls into the hands of unauthorized users. New techniques are required in order to classify packets based on user identity in addition to the traditional source and destination host addresses. This paper introduces Gaussian cryptographic techniques and protocols to assist network administrators in the complex task of identifying the originators of data packets on a network and more easily policing their behavior. The paper provides numerical examples that illustrate certain basic ideas.展开更多
A two-dimensional directional modulation(DM)technology with dual-mode orbital angular momentum(OAM)beam is proposed for physical-layer security of the relay unmanned aerial vehicle(UAV)tracking transmission.The elevat...A two-dimensional directional modulation(DM)technology with dual-mode orbital angular momentum(OAM)beam is proposed for physical-layer security of the relay unmanned aerial vehicle(UAV)tracking transmission.The elevation and azimuth of the vortex beam are modulated into the constellation.which can form the digital waveform with the encoding modulation.Since the signal is direction-dependent,the modulated waveform is purposely distorted in other directions to offer a security technology.Two concentric uniform circular arrays(UCAs)with different radii are excited to generate dual vortex beams with orthogonality for the composite signal,which can increase the demodulation difficulty.Due to the phase propagation characteristics of vortex beam,the constellation at the desired azimuth angle will change continuously within a wavelength.A desired single antenna receiver can use the propagation phase compensation and an opposite helical phase factor for the signal demodulation in the desired direction.Simulations show that the proposed OAM-DM scheme offers a security approach with direction sensitivity transmission.展开更多
The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,a...The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,autonomous vehicles and remotely con⁃trolled robots.For this reason,information security,in terms of the confidentiality,integrity and availability(CIA),becomes more important in the mmWave communication than ever since.The physical layer security(PLS),which is based on the information theory and focuses on the secrecy capacity of the wiretap channel model,is a cost effective and scalable technique to protect the CIA,compared with the traditional cryptographic techniques.In this paper,the theory foundation of PLS is briefly introduced together with the typical PLS performance metrics secrecy rate and outage probability.Then,the most typical PLS techniques for mmWave are introduced,analyzed and compared,which are classified into three major categories of directional modulation(DM),artificial noise(AN),and directional precoding(DPC).Finally,several mmWave PLS research problems are briefly discussed,including the low-complexity DM weight vector codebook construction,impact of phase shifter(PS)with finite precision on PLS,and DM-based communications for multiple target receivers.展开更多
In-network data aggregation is severely affected due to information in transmits attack. This is an important problem since wireless sensor networks (WSN) are highly vulnerable to node compromises due to this attack. ...In-network data aggregation is severely affected due to information in transmits attack. This is an important problem since wireless sensor networks (WSN) are highly vulnerable to node compromises due to this attack. As a result, large error in the aggregate computed at the base station due to false sub aggregate values contributed by compromised nodes. When falsified event messages forwarded through intermediate nodes lead to wastage of their limited energy too. Since wireless sensor nodes are battery operated, it has low computational power and energy. In view of this, the algorithms designed for wireless sensor nodes should be such that, they extend the lifetime, use less computation and enhance security so as to enhance the network life time. This article presents Vernam Cipher cryptographic technique based data compression algorithm using huff man source coding scheme in order to enhance security and lifetime of the energy constrained wireless sensor nodes. In addition, this scheme is evaluated by using different processor based sensor node implementations and the results are compared against to other existing schemes. In particular, we present a secure light weight algorithm for the wireless sensor nodes which are consuming less energy for its operation. Using this, the entropy improvement is achieved to a greater extend.展开更多
More and more cryptographic protocols have been used to achieve various security requirements of distributed systems in the open network environment. However cryptographic protocols are very difficult to design and an...More and more cryptographic protocols have been used to achieve various security requirements of distributed systems in the open network environment. However cryptographic protocols are very difficult to design and analyze due to the complexity of the cryptographic protocol execution, and a large number of problems are unsolved that range from the theory framework to the concrete analysis technique. In this paper, we build a new algebra called cryptographic protocol algebra (CPA) for describing the message operations with many cryptographic primitives, and proposed a new algebra model for cryptographic protocols based on the CPA. In the model, expanding processes of the participants knowledge on the protocol runs are characterized with some algebraic notions such as subalgebra, free generator and polynomial algebra, and attack processes are modeled with a new notion similar to that of the exact sequence used in homological algebra. Then we develope a mathematical approach to the cryptographic protocol security analysis. By using algebraic techniques, we have shown that for those cryptographic protocols with some symmetric properties, the execution space generated by an arbitrary number of participants may boil down to a smaller space generated by several honest participants and attackers. Furthermore we discuss the composability problem of cryptographic protocols and give a sufficient condition under which the protocol composed of two correct cryptographic protocols is still correct, and we finally offer a counterexample to show that the statement may not be true when the condition is not met.展开更多
An efficient approach to analyzing cryptographic protocols is to develop automatic analysis tools based on formal methods. However, the approach has encountered the high computational complexity problem due to reasons...An efficient approach to analyzing cryptographic protocols is to develop automatic analysis tools based on formal methods. However, the approach has encountered the high computational complexity problem due to reasons that participants of protocols are arbitrary, their message concurrent. We propose an efficient structures are complex and their executions are automatic verifying algorithm for analyzing cryptographic protocols based on the Cryptographic Protocol Algebra (CPA) model proposed recently, in which algebraic techniques are used to simplify the description of cryptographic protocols and their executions. Redundant states generated in the analysis processes are much reduced by introducing a new algebraic technique called Universal Polynomial Equation and the algorithm can be used to verify the correctness of protocols in the infinite states space. We have implemented an efficient automatic analysis tool for cryptographic protocols, called ACT-SPA, based on this algorithm, and used the tool to check more than 20 cryptographic protocols. The analysis results show that this tool is more efficient, and an attack instance not offered previously is checked by using this tool.展开更多
A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multipli...A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multiplications. The technique of coordinates conversion and fast multiplication algorithm of two large integers are utilized to avoid frequent inversions and to accelerate the field multiplications used in point multiplications. The characteristic of hardware parallelism is considered in the implementation of point multiplications. The coprocessor implemented on XILINX XC2V3000 computes a point multiplication for an arbitrary point on a curve defined over GF(2192?264?1) with the frequency of 10 MHz in 4.40 ms in the average case and 5.74 ms in the worst case. At the same circumstance, the coprocessor implemented on XILINX XC2V4000 takes 2.2 ms in the average case and 2.88 ms in the worst case.展开更多
An all-optical cryptographic device for secure communication, based on the properties of soliton beams, is presented. It can encode a given bit stream of optical pulses, changing their phase and their amplitude as a f...An all-optical cryptographic device for secure communication, based on the properties of soliton beams, is presented. It can encode a given bit stream of optical pulses, changing their phase and their amplitude as a function of an encryption serial key that merge with the data stream, generating a ciphered stream. The greatest advantage of the device is real-time encrypting – data can be transmitted at the original speed without slowing down.展开更多
Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM ope...Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.展开更多
文摘In an era characterized by digital pervasiveness and rapidly expanding datasets,ensuring the integrity and reliability of information is paramount.As cyber threats evolve in complexity,traditional cryptographic methods face increasingly sophisticated challenges.This article initiates an exploration into these challenges,focusing on key exchanges(encompassing their variety and subtleties),scalability,and the time metrics associated with various cryptographic processes.We propose a novel cryptographic approach underpinned by theoretical frameworks and practical engineering.Central to this approach is a thorough analysis of the interplay between Confidentiality and Integrity,foundational pillars of information security.Our method employs a phased strategy,beginning with a detailed examination of traditional cryptographic processes,including Elliptic Curve Diffie-Hellman(ECDH)key exchanges.We also delve into encrypt/decrypt paradigms,signature generation modes,and the hashes used for Message Authentication Codes(MACs).Each process is rigorously evaluated for performance and reliability.To gain a comprehensive understanding,a meticulously designed simulation was conducted,revealing the strengths and potential improvement areas of various techniques.Notably,our cryptographic protocol achieved a confidentiality metric of 9.13 in comprehensive simulation runs,marking a significant advancement over existing methods.Furthermore,with integrity metrics at 9.35,the protocol’s resilience is further affirmed.These metrics,derived from stringent testing,underscore the protocol’s efficacy in enhancing data security.
基金National High Technical Research and Development Program of China(863 program)under Grant No. 2007AA01Z471
文摘Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.
文摘Wireless Sensor Networks (WSNs) are resource-constrained networks in which sensor nodes operate in an aggressive and uncontrolled environment and interact with sensitive data. Traffic aggregated by sensor nodes is susceptible to attacks and, due to the nature of WSNs, security mechanisms used in wired networks and other types of wireless networks are not suitable for WSNs. In this paper, we propose a mechanism to assure information security against security attacks and particularly node capturing attacks. We propose a cluster security management protocol, called Cryptographic Checksum Clustering Security Management (C3SM), to provide an efficient decentralized security management for hierarchal networks. In C3SM, every cluster selects dynamically and alternately a node as a cluster security manager (CSM) which distributes a periodic shared secrete key for all nodes in the cluster. The cluster head, then, authenticates identity of the nodes and derive a unique pairwise key for each node in the cluster. C3SM provides sufficient security regardless how many nodes are compromised, and achieves high connectivity with low memory cost and low energy consumption. Compared to existing protocols, our protocol provides stronger resilience against node capture with lower key storage overhead.
基金Supported bythe National Natural Science Foundationof China (60403027)
文摘In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cryptographic system in managing token, but it doesn't utilize any cryptographic primitives on the routing messages. In PNCSR, each node is fair. Local neighboring nodes collaboratively monitor each other and sustain each other. It also uses a novel credit strategy which additively increases the token lifetime each time a node renews its token. We also analyze the storage, computation, and communication overhead of PNCSR, and provide a simple yet meaningful overhead comparison. Finally, the simulation results show the effectiveness of PNCSR in various situations.
基金Supported by the National Natural Science Foun-dation of China (60373087 ,60473023 and 90104005)HP Labo-ratories of China
文摘Current delegation mechanism of grid security infrastructure (GSI) can't satisfy the requirement of dynamic, distributed and practical security in grid virtual organization. To improve this situation, a TC-enabled GSI is discussed in this paper. With TC-enabled GSI, a practical delegation solution is proposed in this paper through enforcing fine granularity policy over distributed platforms with the emerging trusted computing technologies. Here trusted platform module is treated as a tamper-resistance module to improve grid security infrastructure. With the implement of Project Daonity, it is demonstrated that the solution could gain dynamic and distributed security in grid environment.
基金Supported by the National Basic Research Programof China (G1999035801)
文摘A security kernel architeclrne built on trusted computing platform in thelight of thinking about trusted computing is presented According to this architecture, a newsecurity module TCB (Trusted Computing Base) is added to the operation system kerneland twooperation interface modes are provided for the sake of self-protection. The security kernel isdivided into two parts and trusted mechanism Is separated from security functionality. Ihe TCBmodule implements the trusted mechanism such as measurement and attestation, while the othercomponents of security kernel provide security functionality based on these mechanisms. Thisarchitecture takes full advantage of functions provided by trusted platform and clearly defines thesecurity perimeter of TCB so as to assure stlf-securily from architcetmal vision. We also presentfunction description of TCB and discuss the strengths and limitations comparing with other relatedresearches.
文摘This paper proposes a C/S system model for K-Java and PDA named Net-Wireless.It is a discussion and proposal on information security and solutions for R-Java handsets and PDAsin wireless network. It also explains the scheme which between client security module and serversecurity module. Also, We have developed a Security Server and a K-Java encryption module fore-commerce system and other trade systems.
文摘Securing large corporate communication networks has become an increasingly difficult task. Sensitive information routinely leaves the company network boundaries and falls into the hands of unauthorized users. New techniques are required in order to classify packets based on user identity in addition to the traditional source and destination host addresses. This paper introduces Gaussian cryptographic techniques and protocols to assist network administrators in the complex task of identifying the originators of data packets on a network and more easily policing their behavior. The paper provides numerical examples that illustrate certain basic ideas.
基金supported by the National Natural Science Foundation of China(62031017,61971221)the Aeronautical Science Foundation of China(201901052001)。
文摘A two-dimensional directional modulation(DM)technology with dual-mode orbital angular momentum(OAM)beam is proposed for physical-layer security of the relay unmanned aerial vehicle(UAV)tracking transmission.The elevation and azimuth of the vortex beam are modulated into the constellation.which can form the digital waveform with the encoding modulation.Since the signal is direction-dependent,the modulated waveform is purposely distorted in other directions to offer a security technology.Two concentric uniform circular arrays(UCAs)with different radii are excited to generate dual vortex beams with orthogonality for the composite signal,which can increase the demodulation difficulty.Due to the phase propagation characteristics of vortex beam,the constellation at the desired azimuth angle will change continuously within a wavelength.A desired single antenna receiver can use the propagation phase compensation and an opposite helical phase factor for the signal demodulation in the desired direction.Simulations show that the proposed OAM-DM scheme offers a security approach with direction sensitivity transmission.
文摘The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,autonomous vehicles and remotely con⁃trolled robots.For this reason,information security,in terms of the confidentiality,integrity and availability(CIA),becomes more important in the mmWave communication than ever since.The physical layer security(PLS),which is based on the information theory and focuses on the secrecy capacity of the wiretap channel model,is a cost effective and scalable technique to protect the CIA,compared with the traditional cryptographic techniques.In this paper,the theory foundation of PLS is briefly introduced together with the typical PLS performance metrics secrecy rate and outage probability.Then,the most typical PLS techniques for mmWave are introduced,analyzed and compared,which are classified into three major categories of directional modulation(DM),artificial noise(AN),and directional precoding(DPC).Finally,several mmWave PLS research problems are briefly discussed,including the low-complexity DM weight vector codebook construction,impact of phase shifter(PS)with finite precision on PLS,and DM-based communications for multiple target receivers.
文摘In-network data aggregation is severely affected due to information in transmits attack. This is an important problem since wireless sensor networks (WSN) are highly vulnerable to node compromises due to this attack. As a result, large error in the aggregate computed at the base station due to false sub aggregate values contributed by compromised nodes. When falsified event messages forwarded through intermediate nodes lead to wastage of their limited energy too. Since wireless sensor nodes are battery operated, it has low computational power and energy. In view of this, the algorithms designed for wireless sensor nodes should be such that, they extend the lifetime, use less computation and enhance security so as to enhance the network life time. This article presents Vernam Cipher cryptographic technique based data compression algorithm using huff man source coding scheme in order to enhance security and lifetime of the energy constrained wireless sensor nodes. In addition, this scheme is evaluated by using different processor based sensor node implementations and the results are compared against to other existing schemes. In particular, we present a secure light weight algorithm for the wireless sensor nodes which are consuming less energy for its operation. Using this, the entropy improvement is achieved to a greater extend.
文摘More and more cryptographic protocols have been used to achieve various security requirements of distributed systems in the open network environment. However cryptographic protocols are very difficult to design and analyze due to the complexity of the cryptographic protocol execution, and a large number of problems are unsolved that range from the theory framework to the concrete analysis technique. In this paper, we build a new algebra called cryptographic protocol algebra (CPA) for describing the message operations with many cryptographic primitives, and proposed a new algebra model for cryptographic protocols based on the CPA. In the model, expanding processes of the participants knowledge on the protocol runs are characterized with some algebraic notions such as subalgebra, free generator and polynomial algebra, and attack processes are modeled with a new notion similar to that of the exact sequence used in homological algebra. Then we develope a mathematical approach to the cryptographic protocol security analysis. By using algebraic techniques, we have shown that for those cryptographic protocols with some symmetric properties, the execution space generated by an arbitrary number of participants may boil down to a smaller space generated by several honest participants and attackers. Furthermore we discuss the composability problem of cryptographic protocols and give a sufficient condition under which the protocol composed of two correct cryptographic protocols is still correct, and we finally offer a counterexample to show that the statement may not be true when the condition is not met.
基金supported by the National Natural Science Foundation of China(Grant No.90412011)the State Key Basic Research Program(973)(Grant No.2005CB321803)the State"863"High-tech Research and Development Project(Grant No.2003AA 144150).
文摘An efficient approach to analyzing cryptographic protocols is to develop automatic analysis tools based on formal methods. However, the approach has encountered the high computational complexity problem due to reasons that participants of protocols are arbitrary, their message concurrent. We propose an efficient structures are complex and their executions are automatic verifying algorithm for analyzing cryptographic protocols based on the Cryptographic Protocol Algebra (CPA) model proposed recently, in which algebraic techniques are used to simplify the description of cryptographic protocols and their executions. Redundant states generated in the analysis processes are much reduced by introducing a new algebraic technique called Universal Polynomial Equation and the algorithm can be used to verify the correctness of protocols in the infinite states space. We have implemented an efficient automatic analysis tool for cryptographic protocols, called ACT-SPA, based on this algorithm, and used the tool to check more than 20 cryptographic protocols. The analysis results show that this tool is more efficient, and an attack instance not offered previously is checked by using this tool.
基金Supported by the National Natural Science Foun dation of China ( 69973034 ) and the National High TechnologyResearch and Development Program of China (2002AA141050)
文摘A GF(p) elliptic curve cryptographic coprocessor is proposed and implemented on Field Programmable Gate Array (FPGA). The focus of the coprocessor is on the most critical, complicated and time-consuming point multiplications. The technique of coordinates conversion and fast multiplication algorithm of two large integers are utilized to avoid frequent inversions and to accelerate the field multiplications used in point multiplications. The characteristic of hardware parallelism is considered in the implementation of point multiplications. The coprocessor implemented on XILINX XC2V3000 computes a point multiplication for an arbitrary point on a curve defined over GF(2192?264?1) with the frequency of 10 MHz in 4.40 ms in the average case and 5.74 ms in the worst case. At the same circumstance, the coprocessor implemented on XILINX XC2V4000 takes 2.2 ms in the average case and 2.88 ms in the worst case.
文摘An all-optical cryptographic device for secure communication, based on the properties of soliton beams, is presented. It can encode a given bit stream of optical pulses, changing their phase and their amplitude as a function of an encryption serial key that merge with the data stream, generating a ciphered stream. The greatest advantage of the device is real-time encrypting – data can be transmitted at the original speed without slowing down.
基金supported by National Natural Science Foundation of China (No. 61971149, 62071504, 62271208)in part by the Special Projects in Key Fields for General Universities of Guangdong Province (No. 2020ZDZX3025, 2021ZDZX056)+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515011657)in part by the Featured Innovation Projects of Guangdong Province of China (No. 2021KTSCX049)。
文摘Cascade index modulation(CIM) is a recently proposed improvement of orthogonal frequency division multiplexing with index modulation(OFDM-IM) and achieves better error performance.In CIM, at least two different IM operations construct a super IM operation or achieve new functionality. First, we propose a OFDM with generalized CIM(OFDM-GCIM) scheme to achieve a joint IM of subcarrier selection and multiple-mode(MM)permutations by using a multilevel digital algorithm.Then, two schemes, called double CIM(D-CIM) and multiple-layer CIM(M-CIM), are proposed for secure communication, which combine new IM operation for disrupting the original order of bits and symbols with conventional OFDM-IM, to protect the legitimate users from eavesdropping in the wireless communications. A subcarrier-wise maximum likelihood(ML) detector and a low complexity log-likelihood ratio(LLR) detector are proposed for the legitimate users. A tight upper bound on the bit error rate(BER) of the proposed OFDM-GCIM, D-CIM and MCIM at the legitimate users are derived in closed form by employing the ML criteria detection. Computer simulations and numerical results show that the proposed OFDM-GCIM achieves superior error performance than OFDM-IM, and the error performance at the eavesdroppers demonstrates the security of D-CIM and M-CIM.