A Dy3+-doped LiYF4 single crystal capable of generating white light by simultaneous blue and yellow light emission of phosphorescent centers is produced. Chromaticity coordinates and photoluminescence intensity vary ...A Dy3+-doped LiYF4 single crystal capable of generating white light by simultaneous blue and yellow light emission of phosphorescent centers is produced. Chromaticity coordinates and photoluminescence intensity vary with excitation wavelength. Under 350, 365, and 388 nm excitation, the crystal shows excellent white light emission. The most efficient wavelength for white light is 388 nm. The CIE coordina.tes are x=0.316 and y =0.321, and the color temperature (Tc) is 6 368 K. These results indicate that the studied crystal is a potential candidate for ultraviolet light-excited white light-emitting diodes.展开更多
Photonic crystal slabs integrated into organic light-emitting diodes(OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period...Photonic crystal slabs integrated into organic light-emitting diodes(OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period on flexible polycarbonate substrates using UV nanoimprint lithography. A hybrid organic–inorganic nanoimprint resist is used that serves also as a high refractive index layer. OLEDs composed of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) polymer anode, an organic emission layer [poly(p-phenylene vinylene)(PPV)-derivative 'Super Yellow'], and a metal cathode(Li F/Al) are deposited onto the flexible grating substrates. The effects of photonic crystal slab deformation in a flexible OLED are studied in theory and experiment. The substrate deformation is modeled using the finite-element method. The influence of the change in the grating period and the waveguide thickness under bending are investigated. The change in the grating period is found to be the dominant effect. At an emission angle of 20° a change in the resonance wavelength of 1.2% is predicted for a strain of 1.3% perpendicular to the grating grooves. This value is verified experimentally by analyzing electroluminescence and photoluminescence properties of the fabricated grating OLEDs.展开更多
We investigate the effect of AlN/AlGaN superlattices(SLs) on crystal and optical properties of AlGN epitaxial layers. The result indicates that the crystal quality of AlGaN layers is consistent within a wide range o...We investigate the effect of AlN/AlGaN superlattices(SLs) on crystal and optical properties of AlGN epitaxial layers. The result indicates that the crystal quality of AlGaN layers is consistent within a wide range of SLs thicknesses, while the optical properties are opposite. With SLs thickness decreasing from 20/44 to 17/36 and 15/29 nm, the full-width at half maximum of X-ray rocking curves for (0002)- and(1012)-plane of n-AlGaN layers grown on SLs are consistent of around 250 arcsec and 700 arcsec, respectively. Meanwhile, the center of the low optical transmittance band decreases from 326 to 279 nm and less than 266 nm as the SLs thickness decreases.280 nm deep ultraviolet light-emitting diodes(DUV-LEDs) structures are further regrown on the n-AlGaN layers.The electroluminescent intensities of samples are 30% higher than that of the sample whose low optical transmittance band appears around 279 nm. Optical simulations reveal that the SLs acts as distributed Bragg reflectors, thus less photons of the corresponding wavelength escape from the sapphire backside.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51272109 and 50972061)the Natural Science Foundation of Zhejiang Province(Nos. R4100364 and Z4110072)+1 种基金the Natural Science Foundation of Ningbo City (No. 2012A610115)the K. C. Wong Magna Fund in Ningbo University
文摘A Dy3+-doped LiYF4 single crystal capable of generating white light by simultaneous blue and yellow light emission of phosphorescent centers is produced. Chromaticity coordinates and photoluminescence intensity vary with excitation wavelength. Under 350, 365, and 388 nm excitation, the crystal shows excellent white light emission. The most efficient wavelength for white light is 388 nm. The CIE coordina.tes are x=0.316 and y =0.321, and the color temperature (Tc) is 6 368 K. These results indicate that the studied crystal is a potential candidate for ultraviolet light-excited white light-emitting diodes.
基金support by the Bundesministerium fur Bildung und Forschung (BMBF) within the project Nano Futur under Project No. 03X5514
文摘Photonic crystal slabs integrated into organic light-emitting diodes(OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period on flexible polycarbonate substrates using UV nanoimprint lithography. A hybrid organic–inorganic nanoimprint resist is used that serves also as a high refractive index layer. OLEDs composed of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) polymer anode, an organic emission layer [poly(p-phenylene vinylene)(PPV)-derivative 'Super Yellow'], and a metal cathode(Li F/Al) are deposited onto the flexible grating substrates. The effects of photonic crystal slab deformation in a flexible OLED are studied in theory and experiment. The substrate deformation is modeled using the finite-element method. The influence of the change in the grating period and the waveguide thickness under bending are investigated. The change in the grating period is found to be the dominant effect. At an emission angle of 20° a change in the resonance wavelength of 1.2% is predicted for a strain of 1.3% perpendicular to the grating grooves. This value is verified experimentally by analyzing electroluminescence and photoluminescence properties of the fabricated grating OLEDs.
基金Project supported in part by the National High Technology Program of China(No.2014AA032608)the National Key R&D Program of China(Nos.2016YFB0400800,2016YFB0400083,2016YFB0400082)+3 种基金in part by the National Natural Sciences Foundation of China(Nos.6136047,61206090,61527814,61674147,61204053)the Beijing Municipal Science and Technology Project(No.D161100002516002)the National 1000 Young Talents Programthe Youth Innovation Promotion Association,CAS
文摘We investigate the effect of AlN/AlGaN superlattices(SLs) on crystal and optical properties of AlGN epitaxial layers. The result indicates that the crystal quality of AlGaN layers is consistent within a wide range of SLs thicknesses, while the optical properties are opposite. With SLs thickness decreasing from 20/44 to 17/36 and 15/29 nm, the full-width at half maximum of X-ray rocking curves for (0002)- and(1012)-plane of n-AlGaN layers grown on SLs are consistent of around 250 arcsec and 700 arcsec, respectively. Meanwhile, the center of the low optical transmittance band decreases from 326 to 279 nm and less than 266 nm as the SLs thickness decreases.280 nm deep ultraviolet light-emitting diodes(DUV-LEDs) structures are further regrown on the n-AlGaN layers.The electroluminescent intensities of samples are 30% higher than that of the sample whose low optical transmittance band appears around 279 nm. Optical simulations reveal that the SLs acts as distributed Bragg reflectors, thus less photons of the corresponding wavelength escape from the sapphire backside.