期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Phase Diagram, Growth and Optical Property of the LaBWO_6 Crystal 被引量:2
1
作者 孙传祥 林州斌 +2 位作者 张莉珍 黄溢声 王国富 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第7期1088-1092,共5页
The phase diagram, growth and optical property of LaBWO6 crystal are reported. LaBWO6 crystal melts congruently at 1078 ℃. Based on the pseudo-ternary phase diagram of LaBWO6-(Li2WO4/LiF) -B203, the LaBWO6 crystals... The phase diagram, growth and optical property of LaBWO6 crystal are reported. LaBWO6 crystal melts congruently at 1078 ℃. Based on the pseudo-ternary phase diagram of LaBWO6-(Li2WO4/LiF) -B203, the LaBWO6 crystals have been firstly grown by the flux method. LaBWO6 crystal crystallizes in the orthorhombic system, space group P222 with a = 4.1, b = 10.31 and c = 21.71 A. LaBWO6 Crystal exhibits high transparency in a range from 327 to 1100 nm. The absorption edge of the crystal in the UV range is at 293 nm. The SHG efficient of LaBWO6 crystal is 0.3 times as large as that of the KDP crystal. 展开更多
关键词 tungstem borate compound crystal growth from solution optical properties
下载PDF
氨基酸系列改性TGS晶体研究
2
作者 苏根博 贺友平 +1 位作者 姚宏志 史子康 《人工晶体学报》 EI CAS CSCD 北大核心 2000年第S1期106-,共1页
TGS (triglycine sulfate) is a pyroelectric crystal material which has an excllent pyroelectricity.The LATGS,a kind of doped TGS crystal,in which L α alanine (LA) substitues for glycine partially and induces an intern... TGS (triglycine sulfate) is a pyroelectric crystal material which has an excllent pyroelectricity.The LATGS,a kind of doped TGS crystal,in which L α alanine (LA) substitues for glycine partially and induces an internal bias in TGS resulting in permanently poled single domain crystal,becomes the comprehensively used pyroelectric material. Based on the study which was about the locked polarization in LATGS,we select many kinds of aminoacids which have a strong polarity group and a unsymmetry atom to dope into TGS crystals.The aninoacids are LB (L asparagine),LL (L lysine),LH (L histidine) and LG (L glutamid acid).The saturated solutions for above four crystals growth are prepared by TGS doped with different aminoacids in water. Transparent crystals up to several centinetres in size have been grown by circling plate method and the reversible rotation rate of the platform with the crystal was about 90 r/min.There was a prefered growth in the b axis direction,with a growth rate of the b axis of about 1.0-1.2mm/day.The concentrations of aminoacids doped in TGS crystals were determined by a liquid chromatography,the concentrations of different aminoacids are about 10 -3 . It shows that the lattice parameters ( a,b and V )of TGS doped with aminoacids are significant longer than that of pure TGS crystal. We conclude that the pyroelectic cofficient,pyroelectric merit and the locked polarization of four TGS crystals,especially,the internal bield ( E b ) of LLTGS is larger than the LATGS,so that the LLTGS crystal is a promising pyroelectrc material for infrared detector. 展开更多
关键词 TGS crystal pyroelectric material crystal growth from solution
下载PDF
氯酸钠晶体生长动力学的研究
3
作者 陈万春 刘道丹 马文漪 《人工晶体学报》 EI CAS CSCD 北大核心 2000年第S1期30-,共1页
Sodium chlorate is a no coloured,no smell and no poisonous transparent crystal with the formula of NaClO 3.Its structure belongs to the cubic( T 23)class and exhibits optical activity.The space group is P 2 13 and the... Sodium chlorate is a no coloured,no smell and no poisonous transparent crystal with the formula of NaClO 3.Its structure belongs to the cubic( T 23)class and exhibits optical activity.The space group is P 2 13 and there are four molecules per cubic unit cell with a =0.6570nm.We chose the crystal as a research system based on two reasons:(1)since the crystal structure belongs to the cubic class,the crystal faces,such as(100),(010),(001)are possessed of homogeneity,it is the suitable system for studying kinetics of crystal growth;(2)since the solubility of the NaClO 3 is higher in the H 2O and the crystal could be grown from low temperature solution,this is a suitable system for studying a influence of gravity on the boundary layer characteristics of the crystal growth under the microgravity condition. 展开更多
关键词 growth kinetics NaClO 3 crystal in situ observation crystal growth from solution growth mechanism
下载PDF
大尺寸KDP晶体生长
4
作者 GAO Zhang-shou LI Yi ping +2 位作者 ZENG Hong WANG Sheng lai SUN Xun 《人工晶体学报》 EI CAS CSCD 北大核心 2000年第S1期116-117,共2页
KDP and its deuterated analog DKDP (K (D x H 1- x ) 2PO 4) are the first ch oice materials in the fabrication of optical switcher and frequency converter fo r inertial confinement fusion study.In the past years,the gr... KDP and its deuterated analog DKDP (K (D x H 1- x ) 2PO 4) are the first ch oice materials in the fabrication of optical switcher and frequency converter fo r inertial confinement fusion study.In the past years,the growth technique has b een d eveloped greatly.Large aperture crystals can be grown with various methods,such as,temperature decreasing,solution circular flow,and rapid growth method,which i ntend to reduce the cost of production and satisfy the requirement of ICF.As to rapid growth method,much attention has been paid to solution stability and the K DP crystal qualities of this method which has been proved that high speed can be obtained.LLNL has grown KDP crystal with dimension of 57mm×57mm×55mm,260 kil ogram in 59 days.This method is very different from conventional method for grow ing KDP crystal in three directions uniformly.In addition to the growth of the pyramidal faces,rapid crystallization from supersaturated solution results in si gnificant growth of prismatic faces.Inclusions of growth solution and incorporat ion of metal impurities will occur in the prism sector as prism extends very muc h by this method.Fast growth needs high supersaturation(10%—30%),so the grow th condition,such as ,raw materials,apparatus,temperature lowing proceed should be controlled very strictly.In order to improve the utilization of KDP crystal g rown by point seed method,we developed 4 vessels circular technique on the bas e of 3 vessels circular technique recently. 展开更多
关键词 KDP crystal nonlinear optical crystal rapid growth crystal growth from solution
下载PDF
块状晶体生长中的输运现象——从数值的非线性分析到工艺的改进
5
作者 C.W.Lan (Department of Chemical Engineering National Taiwan University,Taipei,Taiwan 10617) (Tel (Fax):886 2 2363 3917 Email:lan@ruby.che.ntu.edu.tw) 《人工晶体学报》 EI CAS CSCD 北大核心 2000年第S1期8-8,共1页
The quality of substrate crystals is critical to the performance of devices used in electronic and optoelectronic applications.These bulk crystals are mostly grown from the melt or solution,with a well controlled soli... The quality of substrate crystals is critical to the performance of devices used in electronic and optoelectronic applications.These bulk crystals are mostly grown from the melt or solution,with a well controlled solidification or supersaturation,which is affected significantly by the heat and mass flows.Particularly,in the melt growth,the interface kinetics is so fast that the growth is mainly controlled by the transport processes.Hence,the intricate coupling of heat and mass transfer and melt flow strongly influences the grown crystal quality,but its analysis and control is not a trivial task.For most materials,such as semiconductors and oxides,a detailed analysis of the transport processes through experiments is extremely difficult due to the long growth period at high temperature.Therefore,numerical simulation is inevitable.For the past ten years,crystal growth modeling has become one of the most active research fields in materials processing.Indeed,as long as the melt crystal growth of semiconductors remains a mainstay of the microelectronics industry,its modeling continues to be important.In this talk,the role of transport phenomena in bulk crystal growth and their detailed nonlinear analysis are illustrated through our research work over the years.Particular interests will be paid to the zone melting and Bridgman crystal growth.The control of convection and interface shape through external forces,such as rotation,magnetic fields,and vibration will be discussed.Interface instability leading to“pit formation”and interface breakdown due to thermal and solutal flows will also be illustrated. 展开更多
关键词 crystal growth from melt crystal growth from solution mass transport heat transport
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部