Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal the...Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal therapy,using 3 mol%Y_(2)O_(3)stabilized tetragonal zirconia polycrystals(3Y-TZP)as host oxide matrix and iron-oxide(Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3))materials as photothermal modulator and exsolution resource,femtosecond laser ultrafast exsolution approach is presented enabling to conquer this challenge.The key is to trigger photothermal annealing behavior via femtosecond laser ablation to initialize phase transition from monoclinic zirconia(m-ZrO_(2))to tetragonal zirconia(t-ZrO_(2))and induce t-ZrO_(2)columnar crystal growth.Fe-ions rapidly segregate along grain boundaries and diffuse towards the outmost surface,and become‘frozen’,highlighting the potential to use photothermal materials and ultrafast heating/quenching behaviors of femtosecond laser ablation for interfacial exsolution.Triggering interfacial iron-oxide coloring exsolution is composition and concentration dependent.Photothermal materials themselves and corresponding photothermal transition capacity play a crucial role,initializing at 2 wt%,3 wt%,and 5 wt%for Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)doped 3Y-TZP samples.Due to different photothermal effects,exsolution states of ablated 5 wt%Fe_(3)O_(4)/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)-doped 3Y-TZP samples are totally different,with whole coverage,exhaustion(ablated away)and partial exsolution(rich in the grain boundaries in subsurface),respectively.Femtosecond laser ultrafast photothermal exsolution is uniquely featured by up to now the deepest microscale(10μm from 5 wt%-Fe_(3)O_(4)-3Y-TZP sample)Fe-elemental deficient layer for exsolution and the whole coverage of exsolved materials rather than the formation of isolated exsolved particles by other methods.It is believed that this novel exsolution method may pave a good way to modulate interfacial properties for extensive applications in the fields of biology,optics/photonics,energy,catalysis,environment,etc.展开更多
The stresses in laser cladding of Ni3Al-WC composite coating co and in heat affect zone (HAZ) σh have been induced based on considering the influences of laser processing parameters power P and beam traverse speed v....The stresses in laser cladding of Ni3Al-WC composite coating co and in heat affect zone (HAZ) σh have been induced based on considering the influences of laser processing parameters power P and beam traverse speed v.According to the calculated results, certain limits of P and v are necessary in order to obtain crack free coatings. It agrees well with the experimental results.展开更多
Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of ...Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946- nm laser is also calculated.展开更多
A novel theoretical model of thermal diffusion has been established to study thermal interaction between two neighboring diodes in semiconductor laser arrays. The main cause of the ocurrence of the thermal interaction...A novel theoretical model of thermal diffusion has been established to study thermal interaction between two neighboring diodes in semiconductor laser arrays. The main cause of the ocurrence of the thermal interaction between two neighboring diodes in array devices is the heat conduction through heat sink. We hold that as the devices must have heat sink to diffuse heat, this kind of interaction in the array would always exist. However, when the pitch between two neighboring diodes in the array is reasonably defined, this troublesome thermal interaction can be simply reduced by using our model. Based on the individual diodes with leaky waveguide structure, we experimentally succeeded in fabricating 2D 4 ×4 arrays. The thermal interaction between upper and lower diodes in the 2D array is also considered as well as the function of the heat sink. The measured results show that the pulse peak output powor of the 2D 4 ×4 array is high up to 11 W.展开更多
Nanocomposites were fabricated by using a commercial two part epoxy as a matrix and multiwalled carbon nanotubes, graphite fibers and boron nitride platelets as filler materials. Multiwalled carbon nanotubes (MWCNTs) ...Nanocomposites were fabricated by using a commercial two part epoxy as a matrix and multiwalled carbon nanotubes, graphite fibers and boron nitride platelets as filler materials. Multiwalled carbon nanotubes (MWCNTs) that were produced by chemical vapor deposition were found to produce nanocomposites with better thermal diffusivity and thermal conductivity than the MWCNTs that were produced by the combustion method. Compared to the MWCNTs produced by both methods and graphite fibers, boron nitride produced nanocomposites with the highest thermal conductivity. Specific heat capacity was measured by using differential scanning calorimetry and thermal diffusivity was measured by using the laser flash.展开更多
The laser generated ultrasound in solids in a thermoelastic regime is studied by solving thermoelastic wave equations. Analytic expressions of two-dimensional far-field ultrasonic displacements including the effects o...The laser generated ultrasound in solids in a thermoelastic regime is studied by solving thermoelastic wave equations. Analytic expressions of two-dimensional far-field ultrasonic displacements including the effects of thermal diffusion and optical penetration were obtained by means of the integral transform method. The meaning of the expressions is discussed. The effects of optical absorption coefficient on the directivity of laser generated ultrasound in non-metallic solids are also discussed. The directivity patterns of both longitudinal waves and shear waves are presented.展开更多
This paper investigates the temperature field distribution and thermal focal length within a laser diode array (LDA) end-pumped YVO4/Nd:YVO4 rectangular composite crystal. A general expression of the temperature fi...This paper investigates the temperature field distribution and thermal focal length within a laser diode array (LDA) end-pumped YVO4/Nd:YVO4 rectangular composite crystal. A general expression of the temperature field distribution within the Nd:YVO4 rectangular crystal was obtained by analysing the characteristics of the Nd:YVO4 crystal and solving the Poisson equation with boundary conditions. The temperature field distributions in the Nd:YVO4 rectangular crystal for the YVO4/Nd:YVO4 composite crystal and the Nd:YVO4 single crystal are researched respectively. Calculating the thermal focal length within the Nd:YVO4 rectangular crystal was done by an analysis of the additional optical path differences (OPD) caused by heat, which was very identical with experimental results in this paper. Research results show that the maximum relative temperature on the rear face of the Nd:YVO4 crystal in the composite crystal is 150 K and the thermal focal length is 35.7mm when the output power of the LDA is 22 W. In the same circumstances, the experimental value of the thermal focal length is 37.4 mm. So the relative error between the theoretical analysis and the experimental result is only 4.5%. With the same conditions, the thermal focal length of the Nd:YVO4 single crystal is 18.5 mm. So the relative rate of the thermal focal length between the YVO4/Nd:YVO4 crystal and the Nd:YVO4 crystal is 93%. So, the thermal stability of the output power and the beam quality of the YVO4/Nd:YVO4 laser is more advantageous than the laser with Nd:YVO4 single crystal.展开更多
Achieving efficient thermal management urges to exploit high-thermal-conductivity materials to satisfy the boosted demand of heat dissipation.It is critical to adopt standardized characterization protocols to evaluate...Achieving efficient thermal management urges to exploit high-thermal-conductivity materials to satisfy the boosted demand of heat dissipation.It is critical to adopt standardized characterization protocols to evaluate the intrinsic thermal conductivity of thermal management materials.However,for the most representative laser flash method,the lack of standard measurement methodology and systematic description on the thermal diffusivity and influencing factors has led to significant deviations and confusion of the thermal conduction performance in the emerging thermal management application.Here,the measurement error factors of thermal diffusivity by the common laser flash analyzer(LFA)are discussed.Taking high-thermal-conductivity graphitic film(GF)as a typical case,the key factors are analyzed to guide the measurement protocol of related carbon-based thermal management materials.The basic principle of the LFA measurement,actual pre-processing conditions,instrument parameters setting,and data analysis are elaborated for accurate measurements.Furthermore,the graphene thick films and common isotropic materials are also extended to meet various thermal measurement requirements.Based on the existing practical problems,we propose a feasible test flow to achieve a unified and standardized thermal conductivity measurement,which is beneficial to the rapid development of carbon-based thermal management materials.展开更多
Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed l...Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed laser cladding(HSLC)technology,and places more emphasis on investigating the formation mechanism,phase compositions,and mechanical properties of HSLC-UHTC coatings.Results show that a well-bonded interface between the coating and the tantalum alloy substrate can be formed.The coating is mainly composed of(Zr,Ta)C ceramic solid solution phase with a content of higher than 90% by volume and Ta(W)metal solid solution phase.At a relatively high powder feeding rate,the ZrC ceramic phase appears in the coating while a dense ZrC UHTC top layer with a thickness of up to~50μm is successfully fabricated.As for the mechanical properties of the HSLC coatings,the fracture toughness of the coating decreases with the increase of powder feeding rate.The increase of carbide solid solution phase can significantly improve the high temperature microhardness(552.7±1.8 HV0.5@1000℃).The innovative design of HSLC ZrC-based coatings on refractory alloys accomplishes continuous transitions on microstructure and properties from the substrate to the UHTC top layer,which is a very promising candidate scheme for thermal protection coating.展开更多
The anisotropy of thermal property in an Yb,Nd∶Sc_(2)SiO_(5) crystal is investigated from the temperature of 293 to 573 K. Based on the systematical study of thermal expansion, thermal diffusivity, and specific heat,...The anisotropy of thermal property in an Yb,Nd∶Sc_(2)SiO_(5) crystal is investigated from the temperature of 293 to 573 K. Based on the systematical study of thermal expansion, thermal diffusivity, and specific heat, the thermal conductivity in Yb,Nd∶Sc_(2)SiO_(5) crystals orientated at(100),(010),(001), and(406) is calculated to be 3.46, 2.60, 3.35, and 3.68 W=/(m·K),respectively. The laser output anisotropy of a continuous-wave(CW) and tunable laser is characterized, accordingly. A maximum output power of 6.09 W is achieved in the Yb,Nd∶Sc_(2)SiO_(5) crystal with(010) direction, corresponding to a slope efficiency of 48.56%. The tuning wavelength range in the Yb,Nd∶Sc_(2)SiO_(5) crystal orientated at(100),(010), and(001) is 68, 67,and 65 nm, separately. The effects of thermal properties on CW laser performance are discussed.展开更多
The fluorescence spectrum and thermal properties of the mixed crystal Nd:Luo.gvLa~.o1VO4 are determined. The strongest emission peak located at 1065.6 nm had a full width at half maximum (FWHM) of 2.1 nm. Continuou...The fluorescence spectrum and thermal properties of the mixed crystal Nd:Luo.gvLa~.o1VO4 are determined. The strongest emission peak located at 1065.6 nm had a full width at half maximum (FWHM) of 2.1 nm. Continuous-wave (CW) laser performance is demonstrated by a compact planar planar cavity that is end- pumped by a diode laser. The laser output characteristics are investigated by using output couplers with different transmissions. A maximum CW output power of 8.09 W was obtained at an incident pump power of 19.4 W, which corresponds to an optical-to-optical conversion efficiency of 41.7% and a slope efficiency of 54.6%. The dependence of optimum transmission on pump power is calculated theoretically and is found to be consistent with experimental results.展开更多
For the desirable laser optical property, transition metals or rare-earths are always doped into parent glasses as active ions, and this doping will affect the crystallization of the precursor glasses inevitably. In t...For the desirable laser optical property, transition metals or rare-earths are always doped into parent glasses as active ions, and this doping will affect the crystallization of the precursor glasses inevitably. In this work, crystallization behavior of NaO-CaO-SiO2 system glasses doped with Nd2O3 was investigated. The crystallization kinetic parameters including the crystallization apparent activation energy (E) and the Avrami parameter (n) were also measured. The results show that the NaO-CaO-SiO2 system glassceramics with the NaxCa2Si3O9 crystal as primary phase can be highly crystalized as above 90%. The Nd2O3 doping has a significant influence on the crystallization apparent activation energy and the Avrami parameter, which affect the crystallization behavior and morphology of the transparent glass-ceramics of this system.展开更多
The thermal properties of photonic crystal fiber(PCF) laser with 18 circularly distributed cores are investigated by using full-vector finite element method(FEM).The results show that the 18-core PCF has a more effect...The thermal properties of photonic crystal fiber(PCF) laser with 18 circularly distributed cores are investigated by using full-vector finite element method(FEM).The results show that the 18-core PCF has a more effective thermal dispersion construction compared with the single core PCF and 19-core PCF.In addition,the temperature distribution of 18-core PCF laser with different thermal loads is simulated.The results show that the core temperature approaches the fiber drawing value of 1800 K approximately when the thermal load is above 80 W/m which corresponds to the pumping power of 600 W approximately,while the coating temperature approaches the damage value of about 550 K when the thermal load is above 15 W/m which corresponds to the pumping power of 110 W approximately.Therefore the fiber cooling is necessary to achieve power scaling.Compared with other different cooling systems,the copper cooling scheme is found to be an effective method to reduce the thermal effects.展开更多
Near-infrared(NIR)phosphor-converted light-emitting diodes/laser diodes(LEDs/LDs)are prospective lighting sources for NIR spectroscopy.However,developing NIR phosphor materials with desired thermal robustness and high...Near-infrared(NIR)phosphor-converted light-emitting diodes/laser diodes(LEDs/LDs)are prospective lighting sources for NIR spectroscopy.However,developing NIR phosphor materials with desired thermal robustness and high photoelectric efficiency is a crucial challenge for their applications.In this work,based on the cationic radius matching effect,a series of(Lu,Y)_(3)(Al,Sc,Cr)_(2)Al_(3)O_(12)NIR phosphor ceramics(LuYScCr NIR-PCs)were fabricated by vacuum sintering.Excellent thermal stability(95%@150℃)was obtained in the prepared NIR-PCs,owing to their weak electron-phonon coupling effect(small Huang-Rhys factor).Being excited at 460 nm,NIR-PCs realized a broadband emission(650-850 nm)with internal quantum efficiency(IQE)of 60.68%.Combining NIR-PCs with LED/LD chips,the maximum output power of the encapsulated LED prototype was 447 mW@300 mA with photoelectric efficiency of as high as 18.6%@180 mA,and the maximum output power of the LD prototype was 814 mW@2.5 A.The working temperatures of NIR-PCs were 70.8℃@300 mA(LED)and 102.8℃@3 A(LD).Finally,the prepared NIR-PCs applied in food detection were verified in this study,demonstrating their anticipated application prospects in the future.展开更多
基金financially supported by Shanghai Pujiang Program 23PJ1406500.
文摘Exsolution,as an effective approach to constructing particle-decorated interfaces,is still challenging to yield interfacial films rather than isolated particles.Inspired by in vivo near-infrared laser photothermal therapy,using 3 mol%Y_(2)O_(3)stabilized tetragonal zirconia polycrystals(3Y-TZP)as host oxide matrix and iron-oxide(Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3))materials as photothermal modulator and exsolution resource,femtosecond laser ultrafast exsolution approach is presented enabling to conquer this challenge.The key is to trigger photothermal annealing behavior via femtosecond laser ablation to initialize phase transition from monoclinic zirconia(m-ZrO_(2))to tetragonal zirconia(t-ZrO_(2))and induce t-ZrO_(2)columnar crystal growth.Fe-ions rapidly segregate along grain boundaries and diffuse towards the outmost surface,and become‘frozen’,highlighting the potential to use photothermal materials and ultrafast heating/quenching behaviors of femtosecond laser ablation for interfacial exsolution.Triggering interfacial iron-oxide coloring exsolution is composition and concentration dependent.Photothermal materials themselves and corresponding photothermal transition capacity play a crucial role,initializing at 2 wt%,3 wt%,and 5 wt%for Fe3O4/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)doped 3Y-TZP samples.Due to different photothermal effects,exsolution states of ablated 5 wt%Fe_(3)O_(4)/γ-Fe_(2)O_(3)/α-Fe_(2)O_(3)-doped 3Y-TZP samples are totally different,with whole coverage,exhaustion(ablated away)and partial exsolution(rich in the grain boundaries in subsurface),respectively.Femtosecond laser ultrafast photothermal exsolution is uniquely featured by up to now the deepest microscale(10μm from 5 wt%-Fe_(3)O_(4)-3Y-TZP sample)Fe-elemental deficient layer for exsolution and the whole coverage of exsolved materials rather than the formation of isolated exsolved particles by other methods.It is believed that this novel exsolution method may pave a good way to modulate interfacial properties for extensive applications in the fields of biology,optics/photonics,energy,catalysis,environment,etc.
文摘The stresses in laser cladding of Ni3Al-WC composite coating co and in heat affect zone (HAZ) σh have been induced based on considering the influences of laser processing parameters power P and beam traverse speed v.According to the calculated results, certain limits of P and v are necessary in order to obtain crack free coatings. It agrees well with the experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61405171)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2012FQ014)the Science and Technology Program of the Shandong Higher Education Institutions of China(Grant No.J13LJ05)
文摘Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946- nm laser is also calculated.
文摘A novel theoretical model of thermal diffusion has been established to study thermal interaction between two neighboring diodes in semiconductor laser arrays. The main cause of the ocurrence of the thermal interaction between two neighboring diodes in array devices is the heat conduction through heat sink. We hold that as the devices must have heat sink to diffuse heat, this kind of interaction in the array would always exist. However, when the pitch between two neighboring diodes in the array is reasonably defined, this troublesome thermal interaction can be simply reduced by using our model. Based on the individual diodes with leaky waveguide structure, we experimentally succeeded in fabricating 2D 4 ×4 arrays. The thermal interaction between upper and lower diodes in the 2D array is also considered as well as the function of the heat sink. The measured results show that the pulse peak output powor of the 2D 4 ×4 array is high up to 11 W.
文摘Nanocomposites were fabricated by using a commercial two part epoxy as a matrix and multiwalled carbon nanotubes, graphite fibers and boron nitride platelets as filler materials. Multiwalled carbon nanotubes (MWCNTs) that were produced by chemical vapor deposition were found to produce nanocomposites with better thermal diffusivity and thermal conductivity than the MWCNTs that were produced by the combustion method. Compared to the MWCNTs produced by both methods and graphite fibers, boron nitride produced nanocomposites with the highest thermal conductivity. Specific heat capacity was measured by using differential scanning calorimetry and thermal diffusivity was measured by using the laser flash.
文摘The laser generated ultrasound in solids in a thermoelastic regime is studied by solving thermoelastic wave equations. Analytic expressions of two-dimensional far-field ultrasonic displacements including the effects of thermal diffusion and optical penetration were obtained by means of the integral transform method. The meaning of the expressions is discussed. The effects of optical absorption coefficient on the directivity of laser generated ultrasound in non-metallic solids are also discussed. The directivity patterns of both longitudinal waves and shear waves are presented.
文摘This paper investigates the temperature field distribution and thermal focal length within a laser diode array (LDA) end-pumped YVO4/Nd:YVO4 rectangular composite crystal. A general expression of the temperature field distribution within the Nd:YVO4 rectangular crystal was obtained by analysing the characteristics of the Nd:YVO4 crystal and solving the Poisson equation with boundary conditions. The temperature field distributions in the Nd:YVO4 rectangular crystal for the YVO4/Nd:YVO4 composite crystal and the Nd:YVO4 single crystal are researched respectively. Calculating the thermal focal length within the Nd:YVO4 rectangular crystal was done by an analysis of the additional optical path differences (OPD) caused by heat, which was very identical with experimental results in this paper. Research results show that the maximum relative temperature on the rear face of the Nd:YVO4 crystal in the composite crystal is 150 K and the thermal focal length is 35.7mm when the output power of the LDA is 22 W. In the same circumstances, the experimental value of the thermal focal length is 37.4 mm. So the relative error between the theoretical analysis and the experimental result is only 4.5%. With the same conditions, the thermal focal length of the Nd:YVO4 single crystal is 18.5 mm. So the relative rate of the thermal focal length between the YVO4/Nd:YVO4 crystal and the Nd:YVO4 crystal is 93%. So, the thermal stability of the output power and the beam quality of the YVO4/Nd:YVO4 laser is more advantageous than the laser with Nd:YVO4 single crystal.
基金supported by the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)"Pioneer"and"Leading Goose"R&D Program of Zhejiang 2023C01190。
文摘Achieving efficient thermal management urges to exploit high-thermal-conductivity materials to satisfy the boosted demand of heat dissipation.It is critical to adopt standardized characterization protocols to evaluate the intrinsic thermal conductivity of thermal management materials.However,for the most representative laser flash method,the lack of standard measurement methodology and systematic description on the thermal diffusivity and influencing factors has led to significant deviations and confusion of the thermal conduction performance in the emerging thermal management application.Here,the measurement error factors of thermal diffusivity by the common laser flash analyzer(LFA)are discussed.Taking high-thermal-conductivity graphitic film(GF)as a typical case,the key factors are analyzed to guide the measurement protocol of related carbon-based thermal management materials.The basic principle of the LFA measurement,actual pre-processing conditions,instrument parameters setting,and data analysis are elaborated for accurate measurements.Furthermore,the graphene thick films and common isotropic materials are also extended to meet various thermal measurement requirements.Based on the existing practical problems,we propose a feasible test flow to achieve a unified and standardized thermal conductivity measurement,which is beneficial to the rapid development of carbon-based thermal management materials.
基金supported by the National Natural Science Foundation of China(Nos.52105233 and 52275366)the Tianjin Science and Technology Plan Project(No.22JCYBJC01590).
文摘Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed laser cladding(HSLC)technology,and places more emphasis on investigating the formation mechanism,phase compositions,and mechanical properties of HSLC-UHTC coatings.Results show that a well-bonded interface between the coating and the tantalum alloy substrate can be formed.The coating is mainly composed of(Zr,Ta)C ceramic solid solution phase with a content of higher than 90% by volume and Ta(W)metal solid solution phase.At a relatively high powder feeding rate,the ZrC ceramic phase appears in the coating while a dense ZrC UHTC top layer with a thickness of up to~50μm is successfully fabricated.As for the mechanical properties of the HSLC coatings,the fracture toughness of the coating decreases with the increase of powder feeding rate.The increase of carbide solid solution phase can significantly improve the high temperature microhardness(552.7±1.8 HV0.5@1000℃).The innovative design of HSLC ZrC-based coatings on refractory alloys accomplishes continuous transitions on microstructure and properties from the substrate to the UHTC top layer,which is a very promising candidate scheme for thermal protection coating.
基金supported by the Natural Science Foundation of Shandong Province (No. ZR2020MF115)the National Key Research and Development Program of China (No. 2017YFA0701000)+2 种基金the National Natural Science Foundation of China (Nos. 61875106, 61775123, and U1830104)the Key Research and Development Program of Shandong Province(Nos.2019GGX104039 and 2019GGX104053)the SDUSTR esearch Fund (No. 2019TDJH103)。
文摘The anisotropy of thermal property in an Yb,Nd∶Sc_(2)SiO_(5) crystal is investigated from the temperature of 293 to 573 K. Based on the systematical study of thermal expansion, thermal diffusivity, and specific heat, the thermal conductivity in Yb,Nd∶Sc_(2)SiO_(5) crystals orientated at(100),(010),(001), and(406) is calculated to be 3.46, 2.60, 3.35, and 3.68 W=/(m·K),respectively. The laser output anisotropy of a continuous-wave(CW) and tunable laser is characterized, accordingly. A maximum output power of 6.09 W is achieved in the Yb,Nd∶Sc_(2)SiO_(5) crystal with(010) direction, corresponding to a slope efficiency of 48.56%. The tuning wavelength range in the Yb,Nd∶Sc_(2)SiO_(5) crystal orientated at(100),(010), and(001) is 68, 67,and 65 nm, separately. The effects of thermal properties on CW laser performance are discussed.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2010FM029)the Interdisciplinary Incubation Project Foundation of the Shandong University(No.2011JC025)
文摘The fluorescence spectrum and thermal properties of the mixed crystal Nd:Luo.gvLa~.o1VO4 are determined. The strongest emission peak located at 1065.6 nm had a full width at half maximum (FWHM) of 2.1 nm. Continuous-wave (CW) laser performance is demonstrated by a compact planar planar cavity that is end- pumped by a diode laser. The laser output characteristics are investigated by using output couplers with different transmissions. A maximum CW output power of 8.09 W was obtained at an incident pump power of 19.4 W, which corresponds to an optical-to-optical conversion efficiency of 41.7% and a slope efficiency of 54.6%. The dependence of optimum transmission on pump power is calculated theoretically and is found to be consistent with experimental results.
基金financial support of the project from the National Natural Science Foundation of China(No.51172016)
文摘For the desirable laser optical property, transition metals or rare-earths are always doped into parent glasses as active ions, and this doping will affect the crystallization of the precursor glasses inevitably. In this work, crystallization behavior of NaO-CaO-SiO2 system glasses doped with Nd2O3 was investigated. The crystallization kinetic parameters including the crystallization apparent activation energy (E) and the Avrami parameter (n) were also measured. The results show that the NaO-CaO-SiO2 system glassceramics with the NaxCa2Si3O9 crystal as primary phase can be highly crystalized as above 90%. The Nd2O3 doping has a significant influence on the crystallization apparent activation energy and the Avrami parameter, which affect the crystallization behavior and morphology of the transparent glass-ceramics of this system.
基金supported by the National Basic Research Program of China(No.2010CB327801)the Key Program of National Natural Science Foundation of China(No.60637010)the Natural Science Research Project in University of Hebei Province(No.Z2010163)
文摘The thermal properties of photonic crystal fiber(PCF) laser with 18 circularly distributed cores are investigated by using full-vector finite element method(FEM).The results show that the 18-core PCF has a more effective thermal dispersion construction compared with the single core PCF and 19-core PCF.In addition,the temperature distribution of 18-core PCF laser with different thermal loads is simulated.The results show that the core temperature approaches the fiber drawing value of 1800 K approximately when the thermal load is above 80 W/m which corresponds to the pumping power of 600 W approximately,while the coating temperature approaches the damage value of about 550 K when the thermal load is above 15 W/m which corresponds to the pumping power of 110 W approximately.Therefore the fiber cooling is necessary to achieve power scaling.Compared with other different cooling systems,the copper cooling scheme is found to be an effective method to reduce the thermal effects.
基金The authors acknowledge the generous financial support from the National Natural Science Foundation of China(Nos.52302139,61973103,52272141,and 51972060)Doctoral Foundation Project of Henan University of Technology(No.2021BS069)+3 种基金Natural Science Foundation of Henan Province Youth Fund(No.222300420039)the Key Science and Technology Program of Henan Province(Nos.222102210023 and 232102211074)Project of Songshan Laboratory(No.YYJC072022020)Key Specialized Research of Zhengzhou Science and Technology Innovation Cooperation(No.21ZZXTCX01).
文摘Near-infrared(NIR)phosphor-converted light-emitting diodes/laser diodes(LEDs/LDs)are prospective lighting sources for NIR spectroscopy.However,developing NIR phosphor materials with desired thermal robustness and high photoelectric efficiency is a crucial challenge for their applications.In this work,based on the cationic radius matching effect,a series of(Lu,Y)_(3)(Al,Sc,Cr)_(2)Al_(3)O_(12)NIR phosphor ceramics(LuYScCr NIR-PCs)were fabricated by vacuum sintering.Excellent thermal stability(95%@150℃)was obtained in the prepared NIR-PCs,owing to their weak electron-phonon coupling effect(small Huang-Rhys factor).Being excited at 460 nm,NIR-PCs realized a broadband emission(650-850 nm)with internal quantum efficiency(IQE)of 60.68%.Combining NIR-PCs with LED/LD chips,the maximum output power of the encapsulated LED prototype was 447 mW@300 mA with photoelectric efficiency of as high as 18.6%@180 mA,and the maximum output power of the LD prototype was 814 mW@2.5 A.The working temperatures of NIR-PCs were 70.8℃@300 mA(LED)and 102.8℃@3 A(LD).Finally,the prepared NIR-PCs applied in food detection were verified in this study,demonstrating their anticipated application prospects in the future.