In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided m...In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguldes is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.Sttm. A finite-difference tlme-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.展开更多
The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouri...The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouring temperature on the microstructure and crystal growth direction of permanent mould casting pure Al were also discussed. The results indicate that the α(Al) crystals in the pure Al do not always keep common columnar grains, but change from the columnar grains to columnar dendrites with developed arms as the pouring temperature rises. The growth direction also varies with the change of pouring temperature. Cu element has similar effects on the microstructures of the PMC and DS casting Al-Cu alloys and the α(Al) crystals gradually change from columnar crystals in turn to columnar dendrites and developed equiaxed dendrites as the Cu content increases. The crystal growth direction in the PMC alloys gradually approaches (110) orientation with increasing Cu content. But the resulting crystals with growth direction of (110) do not belong to feathery grains. There are also no feathery grains to form in all of the DS Al-Cu alloys.展开更多
As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeli...As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.展开更多
Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is a...Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is also found to influence the study of exciton ground state energy and ground state binding energy in Al_(x)Ga_(1−x)As semiconductor spherical quantum dots.The Al_(x)Ga_(1−x)As is considered to be a direct semiconductor at AI concentration below 0.45,and an indirect one at the concentration above 0.45.With regards to the former,the ground state binding energy increases and decreases with AI concentration and eigenfrequency,respectively;however,while the ground state energy increases with AI concentration,it is marginally influenced by eigenfrequency.On the other hand,considering the latter,while the ground state binding energy increases with AI concentration,it decreases with eigenfrequency;nevertheless,the ground state energy increases both with AI concentration and eigenfrequency.Hence,for the better practical performance of the semiconductors,the properties of the excitons are suggested to vary by adjusting AI concentration and eigenfrequency.展开更多
Here we show the results of experimental observation of decomposition of the solution components into the neighboring cells. The liquid solution under crystallization first gets into the unstable state and then decomp...Here we show the results of experimental observation of decomposition of the solution components into the neighboring cells. The liquid solution under crystallization first gets into the unstable state and then decomposes. The decomposition result is fixed in the solid phase as inhomogeneous component distribution. Our experimental results enable to argue that the eutectic pattern forms due to interface instability and spinodal decomposition of non-equilibrium solution forming in front of the interface.展开更多
Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of ...Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle.展开更多
The floating phenomenon of MC carbide(TiC)in a hot corrosion resistant single crystal Ni-base superalloy was observed during planar and cellular interface directional solidification.The explanation about the phenomeno...The floating phenomenon of MC carbide(TiC)in a hot corrosion resistant single crystal Ni-base superalloy was observed during planar and cellular interface directional solidification.The explanation about the phenomenon is presented.展开更多
The microstructures and crystal growth directions of permanent mould casting and directionally solidified Al-Mg al oys with different Mg contents have been investigated. The results indicate that the effect of Mg cont...The microstructures and crystal growth directions of permanent mould casting and directionally solidified Al-Mg al oys with different Mg contents have been investigated. The results indicate that the effect of Mg content on microstructure is basical y same for the al oys prepared by these two methods. The primary grains change from cel ular crystals to developed columnar dendrites, and then to equiaxed dendrites as the Mg content is increased. Simultaneously, both the cel ular or columnar grain region and the primary trunk spacing decrease. Al of these changes are mainly attributed to the constitutional supercooling resulting from Mg element. Comparatively, the cellular or columnar crystals of the directionally solidified alloys are straighter and more paral el than those of the permanent mould casting al oys. These have straight or wavy grain boundaries, one of the most important microstructure characteristics of feathery grains. However, the transverse microstructure and growth direction reveal that they do not belong to feathery grains. The Mg seemingly can affect the crystal growth direction, but does not result in the formation of feathery grains under the conditions employed in the study.展开更多
Directionally solidified single crystal superalloy test bars were prepared by the spiral grain selection method.The microstructural evolution and orientation characteristics of the starter block and spiral part were s...Directionally solidified single crystal superalloy test bars were prepared by the spiral grain selection method.The microstructural evolution and orientation characteristics of the starter block and spiral part were studied,and the influence of the competitive growth of crystals on the microstructural characteristics was analyzed.The results show that the divergent grain groups,with small size and randomly oriented grains,appear at the bottom of the start block due to the chilling effect,which is an important area for competitive growth.As the height of the starter block increases,the primary dendrite spacing increases,and the grain density decreases;furthermore,the proportion of grains with an orientation deflection angle less than 10°gradually increases.The<001>texture gradually becomes stronger as the height of the starter block increases,which indicates that the competitive growth of crystals gradually weakens.At the initial stage of the crystal selection in the spiral part,the obstacle of adjacent grains and spiral passage is the main working mechanism.The grains located at the inner side of the front edge of the spiral passage have the growth advantage.The single crystal screening process is achieved at about two-thirds of the spiral height,and the single crystal with the orientation deviation angle of 6.7°from the casting axis is prepared.展开更多
Some physical properties of crystals differ in direction n because crystal lattices are often anisotropic. A polycrystal is an aggregate of numerous tiny crystallites. Unless the polycrystal is an isotropic aggregate ...Some physical properties of crystals differ in direction n because crystal lattices are often anisotropic. A polycrystal is an aggregate of numerous tiny crystallites. Unless the polycrystal is an isotropic aggregate of crystallites, the physical properties of the polycrystal vary with n. The direction-dependent functions (DDF) for crystals and polycrystals are introduced to describe the variations of the physical properties in direction n. Until now there are few papers dealing systematically with relations between the DDF and the crystalline orientation distribution. Herein we give general expressions of the DDF for crystals and polycrystals. We discuss the applications of the DDF in describing the physical properties of crystals and polycrystals.展开更多
Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four typ...Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four types of MC-type carbides, acicular, nodular, blocky, and Chinese script-type in the crystals. With an increase in carbon level, the volume fraction of carbide increased significantly while the volume fraction of eutectic decreased significantly. Furthermore, the size of carbide in high level carbon alloy became much larger.展开更多
To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of...To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.展开更多
Bridgman directional solidification of investment castings is a key technology for the production of reliable and highly efficient gas turbine blades. In this paper, a mathematical model for three-dimensional (3D) s...Bridgman directional solidification of investment castings is a key technology for the production of reliable and highly efficient gas turbine blades. In this paper, a mathematical model for three-dimensional (3D) simulation of solidification process of single crystal investment castings was developed based on basic heat transfer equations. Complex heat radiation among the multiple blade castings and the furnace wall was considered in the model. Temperature distribution and temperature gradient in superalloy investment castings of single blade and multiple ones were investigated, respectively. The calculated cooling curves were compared with the experimental results and agreed well with the latter. It is indicated that the unsymmetrical temperature distribution and curved liquid-solid interface caused by the circle distribution of multiple turbine blades are probably main reasons why the stray grain and other casting defects occur in the turbine blade.展开更多
In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were num...In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were numerically simulated. Simulation results demonstrate that the temperature distribution at the blade platforms is obviously asymmetrical. On the outside of the blade which directly faces the heating element, the liquidus(TL) isotherms progress relatively smoothly. On the inside of the blades facing the central rod, however, the TLisotherms are in concave shape and the slope goes upwards to the platform extremities. The average undercooling extent ?T and undercooling time ?t at the inside are much higher than those at the outside. It was then predicted that the inside platform extremities have significantly higher probabilities of stray grain formation compared to the outside ones. A corresponding experiment was carried out and the metallographic examination exhibited the same side-and height-dependence of stray grain formation in the blades as predicted. On the inside of the blades, all platforms are occupied by stray grains, while the platforms on the outside are nearly stray grain free. The simulation result agrees very well with the experimental observation.展开更多
Laser multi\|layer cladding experiments were performed on the substrate of DD3 single crystal with FGH95 powder as cladding material.The solidification microstructure in the sample was investigated.It was found that t...Laser multi\|layer cladding experiments were performed on the substrate of DD3 single crystal with FGH95 powder as cladding material.The solidification microstructure in the sample was investigated.It was found that the solidification microstructure was greatly influenced by the crystallography orientation of the substrate and the local solidification conditions.When the angle between the preferred orientation of the single crystal and the direction of heat flow in the cladding layer is less than 30°,single crystal cladding layers were acquired.Otherwise the crystallography orientation of the cladding layer will deviate from the orientation of the substrate and the microstructure with polycrystalline appears.Meanwhile,even when the experiments were performed on the same preferred crystal surface,the solidification microstructures will be different distinctly resulting from the variation of the local solidification conditions.The secondary arms were degenerated and the primary arm spacing was about 10\|20μm.Further investigation shows that the phases of the cladding layer are mainly made up ofγ,γ′,the flower\|likeγ/γ′eutectic and carbide.The morphology ofγ′was cubical and the size is less than 0.1μm.展开更多
The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V) on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a...The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V) on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a 3D Cel ular Automaton Finite Element (CAFE) model. The results indicate that the stray grains nucleate at the edges of platform at V=150μm·s-1 and 200μm·s-1. Using ProCAST computer simulation software, it was proven that the stray grain formation is signiifcantly dependent on the undercooling and the temperature ifeld distribution in the platform. The macroscopic curvature of the liquidus isotherm becomes markedly concave with an increase in the withdrawal rate. The probability of stray grain formation at the edges of platform can be increased by increasing the withdrawal rate in the range of 70μm·s-1 to 200μm·s-1.展开更多
Carbon and boron have been considered to strengthen grain boundaries that might form during single crystal casting.In this study the effect of boron on solidification behavior and creep properties of the carbon doped ...Carbon and boron have been considered to strengthen grain boundaries that might form during single crystal casting.In this study the effect of boron on solidification behavior and creep properties of the carbon doped single crystal RR 2072 has been investigated.In order to understand solidification behavior with boron addition,the solid/liquid interface morphology and solidification microstructure were examined with solidification rate.The relationship between mi-crostructural evolution and creep properties of the carbon and boron modified single crystal has been also investigated.展开更多
In SSRF, the design of 1st crystal cooling geometry of double crystal monochromator with sagittal focus is mainly reported by China. Our simulation indicates that the broadening of the full width at half maximum of th...In SSRF, the design of 1st crystal cooling geometry of double crystal monochromator with sagittal focus is mainly reported by China. Our simulation indicates that the broadening of the full width at half maximum of the rocking curve of the double crystal monochromator induced by the heat load is about 3.7 μrad, and is in agreement with the experimental value of 5 μrad. Our scheme showed that the photon flux is reliably linear with electron current of the storage ring, which is extracted from the monochromator.展开更多
Direct growth and patterning of atomically thin two-dimensional(2D)materials on various substrates are essential steps towards enabling their potential for use in the next generation of electronic and optoelectronic d...Direct growth and patterning of atomically thin two-dimensional(2D)materials on various substrates are essential steps towards enabling their potential for use in the next generation of electronic and optoelectronic devices.The conventional gas-phase growth techniques,however,are not compatible with direct patterning processes.Similarly,the condensed-phase methods,based on metal oxide deposition and chalcogenization processes,require lengthy processing times and high temperatures.Here,a novel self-limiting laser crystallization process for direct crystallization and patterning of 2D materials is demonstrated.It takes advantage of significant differences between the optical properties of the amorphous and crystalline phases.Pulsed laser deposition is used to deposit a thin layer of stoichiometric amorphous molybdenum disulfide(MoS2)film(∼3 nm)onto the fused silica substrates.A tunable nanosecond infrared(IR)laser(1064 nm)is then employed to couple a precise amount of power and number of pulses into the amorphous materials for controlled crystallization and direct writing processes.The IR laser interaction with the amorphous layer results in fast heating,crystallization,and/or evaporation of the materials within a narrow processing window.However,reduction of the midgap and defect states in the as crystallized layers decreases the laser coupling efficiency leading to higher tolerance to process parameters.The deliberate design of such laser 2D material interactions allows the selflimiting crystallization phenomena to occur with increased quality and a much broader processing window.This unique laser processing approach allows high-quality crystallization,direct writing,patterning,and the integration of various 2D materials into future functional devices.展开更多
Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition(CVD) were examined using a low-temperature photoluminescence(PL) technique. The results show that most of the nitrogen-vac...Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition(CVD) were examined using a low-temperature photoluminescence(PL) technique. The results show that most of the nitrogen-vacancy(NV) complexes are present as NV-centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N_2 incorporation and the high mobility of vacancies under growth temperatures of 950–1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy(Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition(MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV-centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.展开更多
基金supported by National Key Basic Research Special Fund of China (Grand No 2006CB921701-705)
文摘In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguldes is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.Sttm. A finite-difference tlme-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.
基金Project(51061010)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of ChinaProject(J201103)supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,China
文摘The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouring temperature on the microstructure and crystal growth direction of permanent mould casting pure Al were also discussed. The results indicate that the α(Al) crystals in the pure Al do not always keep common columnar grains, but change from the columnar grains to columnar dendrites with developed arms as the pouring temperature rises. The growth direction also varies with the change of pouring temperature. Cu element has similar effects on the microstructures of the PMC and DS casting Al-Cu alloys and the α(Al) crystals gradually change from columnar crystals in turn to columnar dendrites and developed equiaxed dendrites as the Cu content increases. The crystal growth direction in the PMC alloys gradually approaches (110) orientation with increasing Cu content. But the resulting crystals with growth direction of (110) do not belong to feathery grains. There are also no feathery grains to form in all of the DS Al-Cu alloys.
基金supported by the National Basic Research Program of China(No.2011CB706801)the National Natural Science Foundation of China(Nos.51171089 and 51374137)the National Science and Technology Major Project(Nos.2011ZX04014-052 and 2012ZX04012-011)
文摘As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.
基金supported by the National Natural Science Foundation of China(Nos.12164032 and 11964026)the Natural Science Foundation of Inner Mongolia(No.2019MS01010)+3 种基金Scientific Research Projects in Colleges and Universities in Inner Mongolia(No.NJZZ19145)Graduate Science Innovative Research Projects(No.S20210281Z)the Natural Science Foundation of Inner Mongolia(No.2022MS01014)Doctor Research Start-up Fund of Inner Mongolia Minzu University(No.BS625).
文摘Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is also found to influence the study of exciton ground state energy and ground state binding energy in Al_(x)Ga_(1−x)As semiconductor spherical quantum dots.The Al_(x)Ga_(1−x)As is considered to be a direct semiconductor at AI concentration below 0.45,and an indirect one at the concentration above 0.45.With regards to the former,the ground state binding energy increases and decreases with AI concentration and eigenfrequency,respectively;however,while the ground state energy increases with AI concentration,it is marginally influenced by eigenfrequency.On the other hand,considering the latter,while the ground state binding energy increases with AI concentration,it decreases with eigenfrequency;nevertheless,the ground state energy increases both with AI concentration and eigenfrequency.Hence,for the better practical performance of the semiconductors,the properties of the excitons are suggested to vary by adjusting AI concentration and eigenfrequency.
文摘Here we show the results of experimental observation of decomposition of the solution components into the neighboring cells. The liquid solution under crystallization first gets into the unstable state and then decomposes. The decomposition result is fixed in the solid phase as inhomogeneous component distribution. Our experimental results enable to argue that the eutectic pattern forms due to interface instability and spinodal decomposition of non-equilibrium solution forming in front of the interface.
基金Project supported by Akdeniz University Scientific Research Projects Coordination Unit
文摘Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle.
文摘The floating phenomenon of MC carbide(TiC)in a hot corrosion resistant single crystal Ni-base superalloy was observed during planar and cellular interface directional solidification.The explanation about the phenomenon is presented.
基金financially supported by the National Natural Science Foundation of China(Grant No.51061010)the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0023)the Program for Hongliu Outstanding Talents of Lanzhou University of Technology
文摘The microstructures and crystal growth directions of permanent mould casting and directionally solidified Al-Mg al oys with different Mg contents have been investigated. The results indicate that the effect of Mg content on microstructure is basical y same for the al oys prepared by these two methods. The primary grains change from cel ular crystals to developed columnar dendrites, and then to equiaxed dendrites as the Mg content is increased. Simultaneously, both the cel ular or columnar grain region and the primary trunk spacing decrease. Al of these changes are mainly attributed to the constitutional supercooling resulting from Mg element. Comparatively, the cellular or columnar crystals of the directionally solidified alloys are straighter and more paral el than those of the permanent mould casting al oys. These have straight or wavy grain boundaries, one of the most important microstructure characteristics of feathery grains. However, the transverse microstructure and growth direction reveal that they do not belong to feathery grains. The Mg seemingly can affect the crystal growth direction, but does not result in the formation of feathery grains under the conditions employed in the study.
基金financially supported by the National Natural Science Foundation of China (52071065)the National Key Research and Development Program of China (2016YFB0301201)the Fundamental Research Funds for the Central Universities (N2007007)
文摘Directionally solidified single crystal superalloy test bars were prepared by the spiral grain selection method.The microstructural evolution and orientation characteristics of the starter block and spiral part were studied,and the influence of the competitive growth of crystals on the microstructural characteristics was analyzed.The results show that the divergent grain groups,with small size and randomly oriented grains,appear at the bottom of the start block due to the chilling effect,which is an important area for competitive growth.As the height of the starter block increases,the primary dendrite spacing increases,and the grain density decreases;furthermore,the proportion of grains with an orientation deflection angle less than 10°gradually increases.The<001>texture gradually becomes stronger as the height of the starter block increases,which indicates that the competitive growth of crystals gradually weakens.At the initial stage of the crystal selection in the spiral part,the obstacle of adjacent grains and spiral passage is the main working mechanism.The grains located at the inner side of the front edge of the spiral passage have the growth advantage.The single crystal screening process is achieved at about two-thirds of the spiral height,and the single crystal with the orientation deviation angle of 6.7°from the casting axis is prepared.
基金supported by the National Natural Science Foundation of China (10562004, 10662004)the Jiangxi Project to Nurture Academic and Technical Leaders in Targeted Areas+1 种基金the Research Fund for the Docotoral Program of Higher Education (20070403003)the Natural Science Foundation of Jiangxi of China (2008GZW0005).
文摘Some physical properties of crystals differ in direction n because crystal lattices are often anisotropic. A polycrystal is an aggregate of numerous tiny crystallites. Unless the polycrystal is an isotropic aggregate of crystallites, the physical properties of the polycrystal vary with n. The direction-dependent functions (DDF) for crystals and polycrystals are introduced to describe the variations of the physical properties in direction n. Until now there are few papers dealing systematically with relations between the DDF and the crystalline orientation distribution. Herein we give general expressions of the DDF for crystals and polycrystals. We discuss the applications of the DDF in describing the physical properties of crystals and polycrystals.
基金Project(51201130)supported by the National Natural Science Foundation of ChinaProject(2012JQ6005)supported by the Natural Science Basic Research Plan in Shaanxi Province of China+2 种基金Project(SKLSP201226)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject(11JK0805)supported by Scientific Research Program Funded by Shaanxi Provincial Education Department,ChinaProject(2010CV631201)supported by the National Basic Research Program of China
文摘Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four types of MC-type carbides, acicular, nodular, blocky, and Chinese script-type in the crystals. With an increase in carbon level, the volume fraction of carbide increased significantly while the volume fraction of eutectic decreased significantly. Furthermore, the size of carbide in high level carbon alloy became much larger.
基金Project (51074105) supported by the National Natural Science Foundation of ChinaProjects (08DZ1130100, 10520706400) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (2007CB613606) supported by the National Basic Research Program of China
文摘To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.
文摘Bridgman directional solidification of investment castings is a key technology for the production of reliable and highly efficient gas turbine blades. In this paper, a mathematical model for three-dimensional (3D) simulation of solidification process of single crystal investment castings was developed based on basic heat transfer equations. Complex heat radiation among the multiple blade castings and the furnace wall was considered in the model. Temperature distribution and temperature gradient in superalloy investment castings of single blade and multiple ones were investigated, respectively. The calculated cooling curves were compared with the experimental results and agreed well with the latter. It is indicated that the unsymmetrical temperature distribution and curved liquid-solid interface caused by the circle distribution of multiple turbine blades are probably main reasons why the stray grain and other casting defects occur in the turbine blade.
基金supported by the“Shenzhen Peacock Plan”the“Guangdong Innovative&Entrepreneurial Research Team Program”
文摘In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were numerically simulated. Simulation results demonstrate that the temperature distribution at the blade platforms is obviously asymmetrical. On the outside of the blade which directly faces the heating element, the liquidus(TL) isotherms progress relatively smoothly. On the inside of the blades facing the central rod, however, the TLisotherms are in concave shape and the slope goes upwards to the platform extremities. The average undercooling extent ?T and undercooling time ?t at the inside are much higher than those at the outside. It was then predicted that the inside platform extremities have significantly higher probabilities of stray grain formation compared to the outside ones. A corresponding experiment was carried out and the metallographic examination exhibited the same side-and height-dependence of stray grain formation in the blades as predicted. On the inside of the blades, all platforms are occupied by stray grains, while the platforms on the outside are nearly stray grain free. The simulation result agrees very well with the experimental observation.
基金National Key Basic Research Development Program me of china(No.G2000067205-3)
文摘Laser multi\|layer cladding experiments were performed on the substrate of DD3 single crystal with FGH95 powder as cladding material.The solidification microstructure in the sample was investigated.It was found that the solidification microstructure was greatly influenced by the crystallography orientation of the substrate and the local solidification conditions.When the angle between the preferred orientation of the single crystal and the direction of heat flow in the cladding layer is less than 30°,single crystal cladding layers were acquired.Otherwise the crystallography orientation of the cladding layer will deviate from the orientation of the substrate and the microstructure with polycrystalline appears.Meanwhile,even when the experiments were performed on the same preferred crystal surface,the solidification microstructures will be different distinctly resulting from the variation of the local solidification conditions.The secondary arms were degenerated and the primary arm spacing was about 10\|20μm.Further investigation shows that the phases of the cladding layer are mainly made up ofγ,γ′,the flower\|likeγ/γ′eutectic and carbide.The morphology ofγ′was cubical and the size is less than 0.1μm.
基金financially supported by the fund of the State Key Laboratory of Solidifi cation Processing at NWPU(No.SKLSP201407)
文摘The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V) on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a 3D Cel ular Automaton Finite Element (CAFE) model. The results indicate that the stray grains nucleate at the edges of platform at V=150μm·s-1 and 200μm·s-1. Using ProCAST computer simulation software, it was proven that the stray grain formation is signiifcantly dependent on the undercooling and the temperature ifeld distribution in the platform. The macroscopic curvature of the liquidus isotherm becomes markedly concave with an increase in the withdrawal rate. The probability of stray grain formation at the edges of platform can be increased by increasing the withdrawal rate in the range of 70μm·s-1 to 200μm·s-1.
文摘Carbon and boron have been considered to strengthen grain boundaries that might form during single crystal casting.In this study the effect of boron on solidification behavior and creep properties of the carbon doped single crystal RR 2072 has been investigated.In order to understand solidification behavior with boron addition,the solid/liquid interface morphology and solidification microstructure were examined with solidification rate.The relationship between mi-crostructural evolution and creep properties of the carbon and boron modified single crystal has been also investigated.
基金Supported by cooling research of double crystal monochromator used by synchrotron radiation(10205024)
文摘In SSRF, the design of 1st crystal cooling geometry of double crystal monochromator with sagittal focus is mainly reported by China. Our simulation indicates that the broadening of the full width at half maximum of the rocking curve of the double crystal monochromator induced by the heat load is about 3.7 μrad, and is in agreement with the experimental value of 5 μrad. Our scheme showed that the photon flux is reliably linear with electron current of the storage ring, which is extracted from the monochromator.
基金This work is supported by the Intermural Grant Program(IGP)at Auburn University.
文摘Direct growth and patterning of atomically thin two-dimensional(2D)materials on various substrates are essential steps towards enabling their potential for use in the next generation of electronic and optoelectronic devices.The conventional gas-phase growth techniques,however,are not compatible with direct patterning processes.Similarly,the condensed-phase methods,based on metal oxide deposition and chalcogenization processes,require lengthy processing times and high temperatures.Here,a novel self-limiting laser crystallization process for direct crystallization and patterning of 2D materials is demonstrated.It takes advantage of significant differences between the optical properties of the amorphous and crystalline phases.Pulsed laser deposition is used to deposit a thin layer of stoichiometric amorphous molybdenum disulfide(MoS2)film(∼3 nm)onto the fused silica substrates.A tunable nanosecond infrared(IR)laser(1064 nm)is then employed to couple a precise amount of power and number of pulses into the amorphous materials for controlled crystallization and direct writing processes.The IR laser interaction with the amorphous layer results in fast heating,crystallization,and/or evaporation of the materials within a narrow processing window.However,reduction of the midgap and defect states in the as crystallized layers decreases the laser coupling efficiency leading to higher tolerance to process parameters.The deliberate design of such laser 2D material interactions allows the selflimiting crystallization phenomena to occur with increased quality and a much broader processing window.This unique laser processing approach allows high-quality crystallization,direct writing,patterning,and the integration of various 2D materials into future functional devices.
基金financially supported by the International Science and Technology Cooperation Program of China (No.2015DFG02100)the National Key Laboratory of Shock Wave and Detonation Physics (LSD) Project (No.YK20150101001)
文摘Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition(CVD) were examined using a low-temperature photoluminescence(PL) technique. The results show that most of the nitrogen-vacancy(NV) complexes are present as NV-centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N_2 incorporation and the high mobility of vacancies under growth temperatures of 950–1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy(Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition(MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV-centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.