Background Congenital cataract is a sight-threatening disease that affects about 1-6 cases per 10000 live births and causes 10%-30% of all blindness in children About 25% of all cases are due to genetic defects...Background Congenital cataract is a sight-threatening disease that affects about 1-6 cases per 10000 live births and causes 10%-30% of all blindness in children About 25% of all cases are due to genetic defects We identified autosomal dominant congenital coralliform cataracts-related genetic defect in a four-generation Chinese family Methods Complete ophthalmological examinations were performed prior to lens extraction Lens samples were then studied by electron microscopy Genomic DNA from family members were examined using whole-genomic linkage analysis, with two-point logarithm of odds (LOD) scores calculated using the Linkage program package (version 5 1) Mutation analysis of candidate genes was performed by direct sequencing Finally, a three-dimensional protein model was predicted using Swiss-Model (version 2 0) Results Eleven of the 23 examined individuals had congenital cataracts Ultrastructure studies revealed crystal deposits in the lens, and granules extensively dispersed in transformed lens fiber cells The maximum two-point LOD score, 3 5 at θ=0 1, was obtained for the marker D2S325 Mutation analysis of the γ-crystallin (CRYG) gene cluster identified a mutation (P23T) in exon 2 of γD-crystallin (CRYGD) Protein structure modeling demonstrated that the P23T mutation caused a subtle change on the surface of the γD protein Conclusions The results suggest that the coralliform cataract phenotype is due to a mutated CRYGD gene, and that this sequence change is identical to one reported by Santhiya to be related to another distinct clinical condition, lamellar cataract This study provides evidence that this same genetic defect may be associated with a different phenotype This is the first report identifying the genetic defect associated with an autosomal dominant congenital coralliform cataract展开更多
Congenital cataract is a crystallin severe blinding disease and genetic factors in disease development are important. Crystallin growth is under a combination of genes and their products in time and space to complete ...Congenital cataract is a crystallin severe blinding disease and genetic factors in disease development are important. Crystallin growth is under a combination of genes and their products in time and space to complete the coordination role of the guidance. Congenital cataract-related genes, included crystallin protein gene (CRYAA, CRYAB, CRYBA1/A3, CRYBA4, CRYBB1, CRYBB2, CRYBB3, CRYGC, CRYGD, CRYGS), gap junction channel protein gene (GJA1, GJA3, GJA8), membrane protein gene (GJA3, GJA8, MIP, LIM2), cytoskeletal protein gene (BF-SP2), transcription factor genes (HSF4, MAF, PITX3, PAX6), ferritin light chain gene (FTL), fibroblast growth factor (FGF) and so on. Currently, there are about 39 genetic loci isolated to which primary cataracts have been mapped, although the number is constantly increasing and depends to some extent on definition. We summarized the recent advances on epidemiology and genetic locations of congenital cataract in this review.展开更多
AIM: To recombine the human alpha B-crystallin(αBcrystallin) using gene cloning technology and prokaryotic expression vector and confirm the biological activity of recombinant human αB-crystallin. METHODS: Cloning t...AIM: To recombine the human alpha B-crystallin(αBcrystallin) using gene cloning technology and prokaryotic expression vector and confirm the biological activity of recombinant human αB-crystallin. METHODS: Cloning the human αB-crystallin cDNA according to the nucleotide sequence of the human αBcrystallin, constructing the pET-28/CRYAB prokaryotic expression plasmid by restriction enzyme digestion method, and stably expressing transformed into the Escherichia coli(E. coli) DH5 alpha. The recombinant human αB-crystallin was purified by Q sepharose. By enzyme digestion analysis, Western blotting and sequencing, the recombinant human αB-crystallin was identified and the activity of its molecular protein was detected.RESULTS: Compared with the gene bank(GeneBank), the cloned human sequence of human αB-crystallin cDNA has the same open reading frame. Identification and sequencing of the cloned human αB-crystallin cDNA in prokaryotic expression vector confirmed the full length sequence, and the vector was constructed successfully. The E. coli containing plasmid pET-28/CRYAB induced by isopropyl-β-D-thiogalactoside successfully expressed the human αB-crystallin. Insulin confirmed that the recombinant human αB-crystallin has a molecular chaperone activity. CONCLUSION: The prokaryotic expression vector pET-28/CRYAB of recombinant human αB-crystallin issuccessfully constructed, and the recombinant human αBcrystallin with molecular chaperone activity is obtained, which lay a foundation for the research and application of the recombinant human αB-crystallin and its chaperone activity.展开更多
Wild-type potato (Solanum tuberosum L.) plants and their transformants harboring agrobacterial rolB or rolC genes under control of the patatin class I promoter were cultured in vitro. These plants were used as a sourc...Wild-type potato (Solanum tuberosum L.) plants and their transformants harboring agrobacterial rolB or rolC genes under control of the patatin class I promoter were cultured in vitro. These plants were used as a source of single-node stem cuttings. The structure of native starch in tubers formed on cuttings was determined using methods of X-ray scattering and differential scanning microcalorimetry (DSC). It was found that in starch from tubers of rolB plants the melting temperature of crystalline lamella was lower and their thickness was less than that in wild-type potato. In tubers of rolC plants starch differed from starch in wild-type plants by a higher melting temperature, reduced melting enthalpy, and a greater thickness of crystalline lamellae. The melting of starch from tubers of rolC plants proceeded as the melting of two independent crystalline structures with melting temperatures of 338.0°K and 342.8°K. Overall data show that starches of different structure can be obtained by using transgenic approach.展开更多
文摘Background Congenital cataract is a sight-threatening disease that affects about 1-6 cases per 10000 live births and causes 10%-30% of all blindness in children About 25% of all cases are due to genetic defects We identified autosomal dominant congenital coralliform cataracts-related genetic defect in a four-generation Chinese family Methods Complete ophthalmological examinations were performed prior to lens extraction Lens samples were then studied by electron microscopy Genomic DNA from family members were examined using whole-genomic linkage analysis, with two-point logarithm of odds (LOD) scores calculated using the Linkage program package (version 5 1) Mutation analysis of candidate genes was performed by direct sequencing Finally, a three-dimensional protein model was predicted using Swiss-Model (version 2 0) Results Eleven of the 23 examined individuals had congenital cataracts Ultrastructure studies revealed crystal deposits in the lens, and granules extensively dispersed in transformed lens fiber cells The maximum two-point LOD score, 3 5 at θ=0 1, was obtained for the marker D2S325 Mutation analysis of the γ-crystallin (CRYG) gene cluster identified a mutation (P23T) in exon 2 of γD-crystallin (CRYGD) Protein structure modeling demonstrated that the P23T mutation caused a subtle change on the surface of the γD protein Conclusions The results suggest that the coralliform cataract phenotype is due to a mutated CRYGD gene, and that this sequence change is identical to one reported by Santhiya to be related to another distinct clinical condition, lamellar cataract This study provides evidence that this same genetic defect may be associated with a different phenotype This is the first report identifying the genetic defect associated with an autosomal dominant congenital coralliform cataract
文摘Congenital cataract is a crystallin severe blinding disease and genetic factors in disease development are important. Crystallin growth is under a combination of genes and their products in time and space to complete the coordination role of the guidance. Congenital cataract-related genes, included crystallin protein gene (CRYAA, CRYAB, CRYBA1/A3, CRYBA4, CRYBB1, CRYBB2, CRYBB3, CRYGC, CRYGD, CRYGS), gap junction channel protein gene (GJA1, GJA3, GJA8), membrane protein gene (GJA3, GJA8, MIP, LIM2), cytoskeletal protein gene (BF-SP2), transcription factor genes (HSF4, MAF, PITX3, PAX6), ferritin light chain gene (FTL), fibroblast growth factor (FGF) and so on. Currently, there are about 39 genetic loci isolated to which primary cataracts have been mapped, although the number is constantly increasing and depends to some extent on definition. We summarized the recent advances on epidemiology and genetic locations of congenital cataract in this review.
基金Supported by National Natural Science Foundation of China Grant (No.81270996)Science and Technology Project Foundation of Hainan Province (No.ZDYF201631)Health Science and Technology Innovation Project Foundation of Sanya (No.2016YW22)
文摘AIM: To recombine the human alpha B-crystallin(αBcrystallin) using gene cloning technology and prokaryotic expression vector and confirm the biological activity of recombinant human αB-crystallin. METHODS: Cloning the human αB-crystallin cDNA according to the nucleotide sequence of the human αBcrystallin, constructing the pET-28/CRYAB prokaryotic expression plasmid by restriction enzyme digestion method, and stably expressing transformed into the Escherichia coli(E. coli) DH5 alpha. The recombinant human αB-crystallin was purified by Q sepharose. By enzyme digestion analysis, Western blotting and sequencing, the recombinant human αB-crystallin was identified and the activity of its molecular protein was detected.RESULTS: Compared with the gene bank(GeneBank), the cloned human sequence of human αB-crystallin cDNA has the same open reading frame. Identification and sequencing of the cloned human αB-crystallin cDNA in prokaryotic expression vector confirmed the full length sequence, and the vector was constructed successfully. The E. coli containing plasmid pET-28/CRYAB induced by isopropyl-β-D-thiogalactoside successfully expressed the human αB-crystallin. Insulin confirmed that the recombinant human αB-crystallin has a molecular chaperone activity. CONCLUSION: The prokaryotic expression vector pET-28/CRYAB of recombinant human αB-crystallin issuccessfully constructed, and the recombinant human αBcrystallin with molecular chaperone activity is obtained, which lay a foundation for the research and application of the recombinant human αB-crystallin and its chaperone activity.
文摘Wild-type potato (Solanum tuberosum L.) plants and their transformants harboring agrobacterial rolB or rolC genes under control of the patatin class I promoter were cultured in vitro. These plants were used as a source of single-node stem cuttings. The structure of native starch in tubers formed on cuttings was determined using methods of X-ray scattering and differential scanning microcalorimetry (DSC). It was found that in starch from tubers of rolB plants the melting temperature of crystalline lamella was lower and their thickness was less than that in wild-type potato. In tubers of rolC plants starch differed from starch in wild-type plants by a higher melting temperature, reduced melting enthalpy, and a greater thickness of crystalline lamellae. The melting of starch from tubers of rolC plants proceeded as the melting of two independent crystalline structures with melting temperatures of 338.0°K and 342.8°K. Overall data show that starches of different structure can be obtained by using transgenic approach.