Perovskite-type oxide has a general formula ABO3. Both the lattice A- and lattice B-sites can be occupied by two kinds of metallic ions, forming substituted perovskites such as La(1-x)SrxCoO3-d and LaFexCo(1-x)O3....Perovskite-type oxide has a general formula ABO3. Both the lattice A- and lattice B-sites can be occupied by two kinds of metallic ions, forming substituted perovskites such as La(1-x)SrxCoO3-d and LaFexCo(1-x)O3. In the present work, we aim to investigate competitive occupying of Fe(3+) and Co(3+) ions into the lattice B-sites of perovskite LaFexCo(1-x)O3 formed under the condition of excess feeding of Fe(3+) and Co(2+) ions relative to the La(3+) ions. For this purpose, standard curve of normalized cell volumes(NCVs) of a defined series of perovskites LaFexCo(1-x)O3 versus the x values was plotted. Lattice occupancy of Fe(3+) ions at the B-sites of the perovskite LaFexCo(1-x)O3 was then determined from the standard curve. It is proved that Fe(3+) ions were capable of occupying preferentially into the lattice B-sites of the perovskite crystalline structure.展开更多
Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of ex...Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.展开更多
Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and...Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and showed a wide range of crystallinity. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materials on electrochemical Li insertion/extraction pedermance was discussed. These three transition metal oxides were classified as one group on the basis of whether the crystallinity of these oxides affects to the performance or not; LiMn_2O_4 and LiCo_(0.5)O_2 belongs to the former group and TiO_2, V_2O_5 and MoO_3 to the latter.展开更多
Recently, 5d transition metal iridates have been reported as promising materials for the manttfacture of exotic quan- tum states. Apart from the semimetallic ground states that have been observed, perovskite SrlrO3 is...Recently, 5d transition metal iridates have been reported as promising materials for the manttfacture of exotic quan- tum states. Apart from the semimetallic ground states that have been observed, perovskite SrlrO3 is also predicted to have a lattice-symmetrically protected topological state in the (110) plane due to its strong: spin-orbil coupling and electron correlation. Compared with non-polar (001)-SflrO3, the especial polarity of (110)-SrIrC)3 undoubtedly adds the: difficulty of fabrication and largely impedes the research on its surface states. Here, we have successfully synthesized high-quality (110)-SflrO3 thin films on (110)-SrTiO3 substrates by reactive molecular beam epitaxy fi^r the first time. Both reflec- tion high-energy electron diffraction pattems and x-ray diffraction measurements suggest the expected orientation and outstanding crystallinity. A (1 × 2) surface reconstruction driven from the surface instabiJity, the. same as that reported in (110)-SrTiO3, is observed. The electric transport measurements uncover that (110)-SrIrO3 exhibits a more prominent semimetallic property in comparison to (001)-SrIrO3.展开更多
The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have stu...The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3d transition-metal(TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect(QAHE) in SnTe.展开更多
Continuous precision casting is an important trend in modern industrialization.Clustering effects in glassforming metallic liquids tremendously influence the properties of rapidly quenched ribbons;therefore,much atten...Continuous precision casting is an important trend in modern industrialization.Clustering effects in glassforming metallic liquids tremendously influence the properties of rapidly quenched ribbons;therefore,much attention has been paid to the study of Fe-based glass-forming melts at high temperatures.Recent investigations of these melts are categorized and reviewed.It is concluded that more efforts are still required to reveal the discipline of amorphization brought about by rapid quenching of Fe-based glass-forming melts.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21171020)
文摘Perovskite-type oxide has a general formula ABO3. Both the lattice A- and lattice B-sites can be occupied by two kinds of metallic ions, forming substituted perovskites such as La(1-x)SrxCoO3-d and LaFexCo(1-x)O3. In the present work, we aim to investigate competitive occupying of Fe(3+) and Co(3+) ions into the lattice B-sites of perovskite LaFexCo(1-x)O3 formed under the condition of excess feeding of Fe(3+) and Co(2+) ions relative to the La(3+) ions. For this purpose, standard curve of normalized cell volumes(NCVs) of a defined series of perovskites LaFexCo(1-x)O3 versus the x values was plotted. Lattice occupancy of Fe(3+) ions at the B-sites of the perovskite LaFexCo(1-x)O3 was then determined from the standard curve. It is proved that Fe(3+) ions were capable of occupying preferentially into the lattice B-sites of the perovskite crystalline structure.
文摘Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.
文摘Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and showed a wide range of crystallinity. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materials on electrochemical Li insertion/extraction pedermance was discussed. These three transition metal oxides were classified as one group on the basis of whether the crystallinity of these oxides affects to the performance or not; LiMn_2O_4 and LiCo_(0.5)O_2 belongs to the former group and TiO_2, V_2O_5 and MoO_3 to the latter.
基金Project supported by the National Key Research and Development Program of the MOST of China(Grant No.2016YFA0300204)the National Key Basic Research Program of China(Grant No.2015CB654901)+2 种基金the National Natural Science Foundation of China(Grant Nos.11574337,11227902,11474147,and11704394)Shanghai Sailing Program(Grant No.17YF1422900)the Award for Outstanding Member in Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘Recently, 5d transition metal iridates have been reported as promising materials for the manttfacture of exotic quan- tum states. Apart from the semimetallic ground states that have been observed, perovskite SrlrO3 is also predicted to have a lattice-symmetrically protected topological state in the (110) plane due to its strong: spin-orbil coupling and electron correlation. Compared with non-polar (001)-SflrO3, the especial polarity of (110)-SrIrC)3 undoubtedly adds the: difficulty of fabrication and largely impedes the research on its surface states. Here, we have successfully synthesized high-quality (110)-SflrO3 thin films on (110)-SrTiO3 substrates by reactive molecular beam epitaxy fi^r the first time. Both reflec- tion high-energy electron diffraction pattems and x-ray diffraction measurements suggest the expected orientation and outstanding crystallinity. A (1 × 2) surface reconstruction driven from the surface instabiJity, the. same as that reported in (110)-SrTiO3, is observed. The electric transport measurements uncover that (110)-SrIrO3 exhibits a more prominent semimetallic property in comparison to (001)-SrIrO3.
基金supported by the National Key Research and Development Program,the National Natural Science Foundation of China(Grant Nos.11334006 and 11504015)the Open Research Fund Program of the State Key Laboratory of Low-dimensional Quantum Physics(Grant No.KF201508)
文摘The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3d transition-metal(TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect(QAHE) in SnTe.
基金Item Sponsored by National Natural Science Foundation of China(51501043)National Scientific and Technological Support Projects of China(2013BAE08B01)Science and Technology Program of Beijing of China(Z141100003814007)
文摘Continuous precision casting is an important trend in modern industrialization.Clustering effects in glassforming metallic liquids tremendously influence the properties of rapidly quenched ribbons;therefore,much attention has been paid to the study of Fe-based glass-forming melts at high temperatures.Recent investigations of these melts are categorized and reviewed.It is concluded that more efforts are still required to reveal the discipline of amorphization brought about by rapid quenching of Fe-based glass-forming melts.