A novel polypropylene random(PPR)composite materials with optimized properties was developed by addingβ-nucleating compound agents(rare earth complex WBG-2 and aryl amide derivative TMB-5)and ternary compound modifie...A novel polypropylene random(PPR)composite materials with optimized properties was developed by addingβ-nucleating compound agents(rare earth complex WBG-2 and aryl amide derivative TMB-5)and ternary compound modifier(TPE/WBG-2/CaCO_(3)).The effects of differentβ-nucleating agents and ternary compound modifier on the mechanical properties and crystallization behavior of PPR were analyzed.The results show that,compared with pure PPR materials,both WBG-2 and TMB-5 could significantly improve the impact strength of PPR.The crystallization temperature of PPR increased with the addition ofβ-nucleating agent.The modified PPR prepared with ternary compound modifier showed the most excellent comprehensive properties.展开更多
The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission...The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM).The results indicated that the as-cast Nd60Fe20Al10Ni10-xYx(X=-0, 2) amorphous alloys were fabricated with some quenched-in crystals, which could be restrained by Y. With the effect of yttrium, both the crystallization temperature and exothermic peak shifted to higher temperatures, illustrating that the thermal stability could be improved. The addition of Y changed the crystallization process and final crystallization results. Moreover, the crystallites in the amorphous matrix became more homogeneous and smaller. Meanwhile, Y was useful for the passivation of oxygen in chemistry and restrained the negative effect of oxygen. The activation energies of the start of crystallization and peaking were 1.21 and 1.16 eV, respectively, according to the Kissinger equation.展开更多
Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obt...Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obtained were investigated. It was found that the tensile modulus of the composites was increased with the addition of CNFs, but their elongation at break and fracture strain energy were decreased, while the tensile strength of the composites was firstly increased and then decreased due to the agglomeration of CNFs at higher loading. Nonisothermal crystallization analysis showed that the CNFs played a role as nucleating agent in PP matrix, which led to increment in the crystallization rate and the degree of crystallinity of PP. Moreover, X-ray diffraction studies showed that the CNFs incorporated in the PP matrix favored the growth of (040)-oriented PP crystals. With the increase in the CNF content, the nucleating and orientation roles of the CNFs were obviously enhanced.展开更多
A binary alloy consisting of poly(phenylene-sulfide) (PPS)/poly(ethylene terephthalate-co-l,4- cyclohexanedimethanol) (PETG) was prepared by the melt blending technology using a twin-screw extruder. The morpho...A binary alloy consisting of poly(phenylene-sulfide) (PPS)/poly(ethylene terephthalate-co-l,4- cyclohexanedimethanol) (PETG) was prepared by the melt blending technology using a twin-screw extruder. The morphology and crystallization behavior of the alloy material were investigated by means of SEM, POM and DSC. The SEM study of the alloy samples revealed that PPS and PETG comprised an incompatible system and the interface structure of two phases could be observed distinctly when the composition of the binary alloy was being changed. The POM results had revealed that incorporation of PETG into PPS could lead to formation of larger spherulite crystals in the course of PPS crystallization, but small and grainy spherulite crystals appeared with further increase in the PETG concentration. The DSC analyses revealed that addition of PETG to the alloy composition could shift the PPS crystallization temperature towards the high-temperature region.展开更多
X-ray powder diffraction and Fourier transform infrared spectroscopy were applied for characterization of Li2O-Al2O3-SiO2 glass-ceramic powders doped with Eu2O3,Gd2O3 and Er2O3,respectively,in the conditions of differ...X-ray powder diffraction and Fourier transform infrared spectroscopy were applied for characterization of Li2O-Al2O3-SiO2 glass-ceramic powders doped with Eu2O3,Gd2O3 and Er2O3,respectively,in the conditions of different heat-treatment temperatures and with various amounts.The powders were derived from the polyacrylamide gel method.The results show that,the wet gels prepared by polyacrylamide perform a unique crystallization behavior in the process of drying,comparing with some customary preparation such as melt processing.The main crystal phase and crystallization sequence of Li2O-Al2O3-SiO2 micro-powders have no distinct with addition of Eu2O3,Gd2O3 or Er2O3,while the crystallization temperature of the β-spodumene decreased and the amount of the β-spodumene increased.展开更多
The effects of high magnetic field on the crystallization behavior of the Fe78Si13B9 metallic glass ribbon were studied. The samples were isothermal annealed for 30 min under high magnetic field and no field,respectiv...The effects of high magnetic field on the crystallization behavior of the Fe78Si13B9 metallic glass ribbon were studied. The samples were isothermal annealed for 30 min under high magnetic field and no field,respectively. Microstructure transformation during crystallization was identified by X-ray diffraction and transmission electron microscopy. It was found that the crystallizations of Fe78Si13B9 metallic glass processed under different conditions were that the precipitation of dendrite α-Fe(Si) and spherulite (Fe,Si)3B phases forms amorphous matrix and then the metastable (Fe,Si)3B phase transforms into the stable Fe2B phase. The grain size of the crystals is smaller and more homogeneous for the isothermal annealed samples under high magnetic field in comparison with that under no field indicating that the crystallization behavior of Fe78Si13B9 metallic glass is suppressed by high magnetic field.展开更多
Phase separation was studied by the optical microscopy in blends of nylon 6 (PA6) with sodium salt of ethylene/methacrylic acid copolymer (PEMA).The image collecting technology was used to keep track of the developme...Phase separation was studied by the optical microscopy in blends of nylon 6 (PA6) with sodium salt of ethylene/methacrylic acid copolymer (PEMA).The image collecting technology was used to keep track of the development of blends at a certain temperature.The fractal dimension of phase separation was calculated by the image solving technology according to the fractal theory and the self similarity behavior of the process was proved.The relationship of the fractal behavior with composition and experimental temperature was discussed.The fractal behavior of the crystallization development of the crystal phase of PA6 in blends was also discussed and the fractal behavior calculated.展开更多
Polypropylene(PP)/MgAl layered double hydroxide(MgAl LDH) nanocomposites were synthesized by refluxing PP and dodecyl sulfate-intercalated MgAI LDH[MgAI(DS)] in non-polar xylene. Their structure, thermal and cry...Polypropylene(PP)/MgAl layered double hydroxide(MgAl LDH) nanocomposites were synthesized by refluxing PP and dodecyl sulfate-intercalated MgAI LDH[MgAI(DS)] in non-polar xylene. Their structure, thermal and crystallization properties were studied via X-ray diffraction(XRD), transmission electron microscopy(TEM), thermogravimetric analysis(TGA), differential scanning calorimetry(DSC), and polarized light microscopy(PLM). The nanoscaled dispersion of MgAI(DS) nanolayeres in the PP matrix was verified by the disappearance of the d(003) XRD diffraction peak of MgAI(DS) and observation of TEM image. The DSC data show that the SDS/LDH inorganic components negatively affect the crystallization properties of PP and decrease the size of PP sphcrulites because the inorganic components act as additional nuclei. The PP/MgA1 LDH nanocomposites have a faster charring progress in a temperature range of 250--430 ℃ and a better thermal stability above 320℃ than pure PP.展开更多
The effects of interfacial modifier on the mechanical, dynamic mechanical properties and crystallization behavior of the polyethylene composites were investigated in the present paper. It was found that the interfacia...The effects of interfacial modifier on the mechanical, dynamic mechanical properties and crystallization behavior of the polyethylene composites were investigated in the present paper. It was found that the interfacial modifer significantly improved the mechanical properties, influenced the dynamic mechanical spectra and slightly changed the crystallization behavior. The results showed that the interfacial modifier changed the dispersion state of dispersed phase of the composites, resulting in different phase structure, which was the major reason leading to different mechanical and crystallization properties.展开更多
Studies on the miscibility of PHB/PELA blends showed that PHB and PELA were miscible in amorphous state.The crystallization behavior of PHB in the blend was strongly de- pendent on the addition of PELA component.
The ferrite process can not only purify wastewater containing heavy metal ions but also recycle valuable metals from wastewater. Therefore, it is considered a promising technology to treat chromiumcontaining wastewate...The ferrite process can not only purify wastewater containing heavy metal ions but also recycle valuable metals from wastewater. Therefore, it is considered a promising technology to treat chromiumcontaining wastewater. However, the process has not been extensively applied in industry due to its high synthesis temperature. In this paper, the feasibility of chromite synthesis at room temperature was comprehensively studied. The effects of critical factors on the effluent quality and the crystallization behavior and stability of the synthetic products were investigated. Results showed that the removal ratio of chromium from wastewater was over 99.0%, and the chromium concentration in the supernatant reached the sewage discharge standard after undergoing the ferrite process at room temperature. Increases in the aeration rate, stirring rate, and reaction time were favorable for the formation of stable chromite. The particles obtained by the ferrite process at room temperature were characterized by a compact structure, and the maximum size of the particles reached 52 μm. Chromium gradually entered the spinel crystal structure during the synthesis process, and the molecular formula of the synthetic chromite might be Fe3-xCrxO4, in which x was approximately 0.30. The path of the microscopic reaction was proposed to illuminate the synthesis mechanism of chromite under room temperature conditions. The present study has laid the foundation for the industrial application of the ferrite process in the purification and utilization of chromium-containing wastewater.展开更多
A self-crosslinkable liquid highly branched polycarbosilane(LHBPCS) with 5.07% vinyl group and a C/Si ratio of 1.33 was used as the precursor to prepare Si C ceramic material. Microwave heating technique and convent...A self-crosslinkable liquid highly branched polycarbosilane(LHBPCS) with 5.07% vinyl group and a C/Si ratio of 1.33 was used as the precursor to prepare Si C ceramic material. Microwave heating technique and conventional heating method were applied for the heating treatment process. It was found that, compared with conventional heating method, microwave heating technique could enhance the crystallinity of Si C ceramic material with small grain size at much lower curing temperature and within shorter time. In addition, the SiO_2 additive could lead to less α-Si C and excess carbon, but worsen the crystallinity of β-Si C in the final samples.展开更多
For a polymer/polymer dismissible blend with two crystallizable components,the crystallization behavior of different components and the reciprocal influences between different crystals are interesting and important,bu...For a polymer/polymer dismissible blend with two crystallizable components,the crystallization behavior of different components and the reciprocal influences between different crystals are interesting and important,but did not investigate in detail.In this study,the L-poly(lactic acid)/polypropylene(PLLA/PP)blends with different weight ratios were prepared by melt mixing and the crystallization behavior of the blends were investigated.Results showed that the crystalline structures of PLLA and PP were not altered by the composition.For the crystallization of PLLA,both the diffusion of chain segments and crystallization rate were enhanced under the existence of PP crystals.For the crystallization of PP,its crystallization rate was depressed under the existence of amorphous PLLA molecular chains.When the PP crystallized from the existence of PLLA crystals,although the diffusion rate of PP was reduced by PLLA crystals,the nucleation positions were obviously enhanced,which accelerated the formation of PP crystals.This investigation would supply more basic data for the application of PLLA/PP blend.展开更多
Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the c...Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the crystallization behavior of Yb-based coatings against CMAS deposits.The reaction products of solid solutions with compositions traversing the Sc_(2)O_(3)–Yb_(2)O_(3)system indicate that Sc^(3+)tends to form[BO_(6)]coordination polyhedra in the crystal structure to promote the formation of garnet and diopside,while Yb^(3+)occupies 7-,8-,and 9-coordinate sites to crystallize apatite and silicocarnotite.The transformation of crystalline products from apatite/silicocarnotite to garnet/diopside greatly improves the efficiency of CMAS melt consumption and facilitates the prevention of its further penetration and corrosion.Based on the commonality of cation occupancy in crystallography,an A(CaO+YbO_(1.5))–B(ScO_(1.5)+MgO+AlO_(1.5))–T(SiO_(2))pseudoternary phase diagram is established,which has great potential for describing phase equilibrium in coating-deposit systems and can provide guidance for the compositional design of corrosion-resistant coatings.展开更多
Lithium aluminosilicate (LAS) glasses are generally difficult to prepare because of their high melting temperature. In this study, the preparation of LAS glasses was achieved at a relatively low melting temperature....Lithium aluminosilicate (LAS) glasses are generally difficult to prepare because of their high melting temperature. In this study, the preparation of LAS glasses was achieved at a relatively low melting temperature. The batch containing MgO-ZnO-LiEO- Al2O3-SiO2 was melted in a platinum crucible at 1550℃ for 2 h and was then followed by two- or three-step heat treatment processes for nucleation and crystal growth. The characterizations were carried out by differential thermal analysis, X-ray diffraction, infrared spectroscopy, scanning electron microscopy, and UV-Vis-NIR scanning spectrophotometry. The hexagonal stuffed β-eucryptite solid solution crystallized at 840-960℃. Most of the hexagonal β-eucryptite solid solution transformed into the tetragonal β-spodumene solid solution at 1100℃. Almost all the aluminum atoms entered into the tetrahedral sites in the aluminosilicate network of the 6- eucryptite/β-quartz solid solution. All of the Al atoms did not belong to the aluminosilicate network of the β-spodumene solid solution. The glass ceramic with a mean grain size of 10-20 nm is transparent, the transmittance reaches -85% in the visible light wavelength.展开更多
B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with different Al_2O_3 contents(1mol%, 3mol%, 5mol%, and 7mol%) was prepared, and it was intended to be used as lead-free and low-melting glass sealants for solid oxide fuel cells....B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with different Al_2O_3 contents(1mol%, 3mol%, 5mol%, and 7mol%) was prepared, and it was intended to be used as lead-free and low-melting glass sealants for solid oxide fuel cells. The effects of Al_2O_3 content on the structures, thermal properties, and sintering behaviors of the B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass were investigated in detail. The Al_2O_3 content largely influenced the structures and thermal properties of the glass. When the Al_2O_3 content 5mol%, the transition temperature of the glass decreased with the Al_2O_3 content, while the crystallization temperature increased with the Al_2O_3 content. However, higher Al_2O_3 content degraded the stability of the glass. The B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with 5 mol% Al_2O_3 content exhibits the optimal sintering densification characteristics and can be used as glass sealants for solid oxide fuel cells.展开更多
Nanosized amorphous TiO2 powders with a specific surface area of 501 m2·g-1 were prepared by hydrolysis. After calcined at 400℃ for 2 h, the prepared amorphous TiO2 powders were fully transformed into anatase cr...Nanosized amorphous TiO2 powders with a specific surface area of 501 m2·g-1 were prepared by hydrolysis. After calcined at 400℃ for 2 h, the prepared amorphous TiO2 powders were fully transformed into anatase crystallites with a specific surface area of 141 m2·g-1. Differential scanning calorimetric (DSC) experiments were performed on the samples of nanosized amorphous TiO2 mixed with microsized anatase, nanosized anatase, or nanosized α-Al2O3 respectively. Effects of sample packing, anatase addition, or α-Al2O3 addition on the crystallization behavior of nanosized amorphous TiO2 were analyzed.展开更多
The mixture model of Al_(85)Y_4Nd_4Ni_7 alloy in which a partiallycrystallized amorphous alloy is regarded as a nanocornposite of an Al nanoparticle and a remainingamorphous matrix is presented. Its evolution in the p...The mixture model of Al_(85)Y_4Nd_4Ni_7 alloy in which a partiallycrystallized amorphous alloy is regarded as a nanocornposite of an Al nanoparticle and a remainingamorphous matrix is presented. Its evolution in the process of crystallization has been investigatedby differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electronmicroscopy (TEM). Mainly amorphous structure with alpha-Al nanocrystals embedded in the amorphousmatrix has been revealed by melt spining the alloy. Crystallization is showed to occur in threestages: (1) crystallization of amorphous alloy and formation of AINiY, AINdNi and unknowncrystalline phases, (2) formation of Al_3 Y and Al_3Nd, and (3) formation of Al_3Ni.展开更多
Investigated the effect of an addition of CaF2 on the crystallization of a glass-ceramic with abrasion resistance. X-ray diffraction, differential thermal analysis and scanning electron microscopy were used to determi...Investigated the effect of an addition of CaF2 on the crystallization of a glass-ceramic with abrasion resistance. X-ray diffraction, differential thermal analysis and scanning electron microscopy were used to determine the effect. The results showed that a suitable addition of CaF2 promoted crystallization by forming an interme- diate crystalline phase. CaF2 can decrease the temperature and active energy of the base-glass for crystallization. When 4 mass-% of CaF2-fraction is added in the glass, the crystallization temperature and active energy is 936 ℃and 172.75 kJ/mol respectively. When CaF2 is increased to 6 mass-%, the temperature and active energy decrease to 890 ℃ and 88.81 kJ/mol. CaF2 is an efficient nucleating agent for the glass-ceramics with abrasion resistant, the optimal content of CaF2 is about 6 mass-%.展开更多
The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our...The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our laboratory are applied to describe its nonisothermal crystallization behavior, the new one is confirmed to be the best and convenient. By determining kinetic parameters, the analysis of the nonisothermal crystallization behavior is performed. According to Kissinger method, the crystallization activation energy of P3DDT is also evaluated.展开更多
基金Funded by the Natural Science Foundation of Liaoning Province of China(No.20180550432)Natural Science Foundation for Young Doctoral Research(No.2020-BS-158)Basic Scientific Research Project of Colleges and Universities of Liaoning Provincial Department of Education(No.LJKQZ2021060)。
文摘A novel polypropylene random(PPR)composite materials with optimized properties was developed by addingβ-nucleating compound agents(rare earth complex WBG-2 and aryl amide derivative TMB-5)and ternary compound modifier(TPE/WBG-2/CaCO_(3)).The effects of differentβ-nucleating agents and ternary compound modifier on the mechanical properties and crystallization behavior of PPR were analyzed.The results show that,compared with pure PPR materials,both WBG-2 and TMB-5 could significantly improve the impact strength of PPR.The crystallization temperature of PPR increased with the addition ofβ-nucleating agent.The modified PPR prepared with ternary compound modifier showed the most excellent comprehensive properties.
基金the National Natural Science Foundation of China (50571052)
文摘The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM).The results indicated that the as-cast Nd60Fe20Al10Ni10-xYx(X=-0, 2) amorphous alloys were fabricated with some quenched-in crystals, which could be restrained by Y. With the effect of yttrium, both the crystallization temperature and exothermic peak shifted to higher temperatures, illustrating that the thermal stability could be improved. The addition of Y changed the crystallization process and final crystallization results. Moreover, the crystallites in the amorphous matrix became more homogeneous and smaller. Meanwhile, Y was useful for the passivation of oxygen in chemistry and restrained the negative effect of oxygen. The activation energies of the start of crystallization and peaking were 1.21 and 1.16 eV, respectively, according to the Kissinger equation.
基金the National Natural Science Foundation of China(Grant No.50025204) the National Hi—Tech R&D Program of China.
文摘Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obtained were investigated. It was found that the tensile modulus of the composites was increased with the addition of CNFs, but their elongation at break and fracture strain energy were decreased, while the tensile strength of the composites was firstly increased and then decreased due to the agglomeration of CNFs at higher loading. Nonisothermal crystallization analysis showed that the CNFs played a role as nucleating agent in PP matrix, which led to increment in the crystallization rate and the degree of crystallinity of PP. Moreover, X-ray diffraction studies showed that the CNFs incorporated in the PP matrix favored the growth of (040)-oriented PP crystals. With the increase in the CNF content, the nucleating and orientation roles of the CNFs were obviously enhanced.
文摘A binary alloy consisting of poly(phenylene-sulfide) (PPS)/poly(ethylene terephthalate-co-l,4- cyclohexanedimethanol) (PETG) was prepared by the melt blending technology using a twin-screw extruder. The morphology and crystallization behavior of the alloy material were investigated by means of SEM, POM and DSC. The SEM study of the alloy samples revealed that PPS and PETG comprised an incompatible system and the interface structure of two phases could be observed distinctly when the composition of the binary alloy was being changed. The POM results had revealed that incorporation of PETG into PPS could lead to formation of larger spherulite crystals in the course of PPS crystallization, but small and grainy spherulite crystals appeared with further increase in the PETG concentration. The DSC analyses revealed that addition of PETG to the alloy composition could shift the PPS crystallization temperature towards the high-temperature region.
文摘X-ray powder diffraction and Fourier transform infrared spectroscopy were applied for characterization of Li2O-Al2O3-SiO2 glass-ceramic powders doped with Eu2O3,Gd2O3 and Er2O3,respectively,in the conditions of different heat-treatment temperatures and with various amounts.The powders were derived from the polyacrylamide gel method.The results show that,the wet gels prepared by polyacrylamide perform a unique crystallization behavior in the process of drying,comparing with some customary preparation such as melt processing.The main crystal phase and crystallization sequence of Li2O-Al2O3-SiO2 micro-powders have no distinct with addition of Eu2O3,Gd2O3 or Er2O3,while the crystallization temperature of the β-spodumene decreased and the amount of the β-spodumene increased.
基金the National Natural Science Foundation of China (No50471067)
文摘The effects of high magnetic field on the crystallization behavior of the Fe78Si13B9 metallic glass ribbon were studied. The samples were isothermal annealed for 30 min under high magnetic field and no field,respectively. Microstructure transformation during crystallization was identified by X-ray diffraction and transmission electron microscopy. It was found that the crystallizations of Fe78Si13B9 metallic glass processed under different conditions were that the precipitation of dendrite α-Fe(Si) and spherulite (Fe,Si)3B phases forms amorphous matrix and then the metastable (Fe,Si)3B phase transforms into the stable Fe2B phase. The grain size of the crystals is smaller and more homogeneous for the isothermal annealed samples under high magnetic field in comparison with that under no field indicating that the crystallization behavior of Fe78Si13B9 metallic glass is suppressed by high magnetic field.
文摘Phase separation was studied by the optical microscopy in blends of nylon 6 (PA6) with sodium salt of ethylene/methacrylic acid copolymer (PEMA).The image collecting technology was used to keep track of the development of blends at a certain temperature.The fractal dimension of phase separation was calculated by the image solving technology according to the fractal theory and the self similarity behavior of the process was proved.The relationship of the fractal behavior with composition and experimental temperature was discussed.The fractal behavior of the crystallization development of the crystal phase of PA6 in blends was also discussed and the fractal behavior calculated.
基金Supported by the National Natural Science Foundation of China(No.50373039)the National Key Basic Research Special Foundation Project of China(No.2001CB409600)
文摘Polypropylene(PP)/MgAl layered double hydroxide(MgAl LDH) nanocomposites were synthesized by refluxing PP and dodecyl sulfate-intercalated MgAI LDH[MgAI(DS)] in non-polar xylene. Their structure, thermal and crystallization properties were studied via X-ray diffraction(XRD), transmission electron microscopy(TEM), thermogravimetric analysis(TGA), differential scanning calorimetry(DSC), and polarized light microscopy(PLM). The nanoscaled dispersion of MgAI(DS) nanolayeres in the PP matrix was verified by the disappearance of the d(003) XRD diffraction peak of MgAI(DS) and observation of TEM image. The DSC data show that the SDS/LDH inorganic components negatively affect the crystallization properties of PP and decrease the size of PP sphcrulites because the inorganic components act as additional nuclei. The PP/MgA1 LDH nanocomposites have a faster charring progress in a temperature range of 250--430 ℃ and a better thermal stability above 320℃ than pure PP.
基金This work was supported by a Fund for Young Scientist from the National Advanced Materials Committee of China(NAMCC)
文摘The effects of interfacial modifier on the mechanical, dynamic mechanical properties and crystallization behavior of the polyethylene composites were investigated in the present paper. It was found that the interfacial modifer significantly improved the mechanical properties, influenced the dynamic mechanical spectra and slightly changed the crystallization behavior. The results showed that the interfacial modifier changed the dispersion state of dispersed phase of the composites, resulting in different phase structure, which was the major reason leading to different mechanical and crystallization properties.
基金The project was supported by the National Natural Science Foundation of China.
文摘Studies on the miscibility of PHB/PELA blends showed that PHB and PELA were miscible in amorphous state.The crystallization behavior of PHB in the blend was strongly de- pendent on the addition of PELA component.
基金National Natural Science Foundation of China (51904129)the Basic Research Project of Yunnan Province (202001AU070028)the Foundation of Yunnan’s Education Ministry,China (2019J0037) for financial support
文摘The ferrite process can not only purify wastewater containing heavy metal ions but also recycle valuable metals from wastewater. Therefore, it is considered a promising technology to treat chromiumcontaining wastewater. However, the process has not been extensively applied in industry due to its high synthesis temperature. In this paper, the feasibility of chromite synthesis at room temperature was comprehensively studied. The effects of critical factors on the effluent quality and the crystallization behavior and stability of the synthetic products were investigated. Results showed that the removal ratio of chromium from wastewater was over 99.0%, and the chromium concentration in the supernatant reached the sewage discharge standard after undergoing the ferrite process at room temperature. Increases in the aeration rate, stirring rate, and reaction time were favorable for the formation of stable chromite. The particles obtained by the ferrite process at room temperature were characterized by a compact structure, and the maximum size of the particles reached 52 μm. Chromium gradually entered the spinel crystal structure during the synthesis process, and the molecular formula of the synthetic chromite might be Fe3-xCrxO4, in which x was approximately 0.30. The path of the microscopic reaction was proposed to illuminate the synthesis mechanism of chromite under room temperature conditions. The present study has laid the foundation for the industrial application of the ferrite process in the purification and utilization of chromium-containing wastewater.
基金Funded by the National Natural Science Foundation of China(Nos.91226202 and 91426304)
文摘A self-crosslinkable liquid highly branched polycarbosilane(LHBPCS) with 5.07% vinyl group and a C/Si ratio of 1.33 was used as the precursor to prepare Si C ceramic material. Microwave heating technique and conventional heating method were applied for the heating treatment process. It was found that, compared with conventional heating method, microwave heating technique could enhance the crystallinity of Si C ceramic material with small grain size at much lower curing temperature and within shorter time. In addition, the SiO_2 additive could lead to less α-Si C and excess carbon, but worsen the crystallinity of β-Si C in the final samples.
基金supported by the National Natural Science Foundation of China(Nos.51403089 and 21574060)the Major Special Projects of Jiangxi Provincial Department of Science and Technology(No.20114ABF05100)+3 种基金the Project of Jiangxi Provincial Department of Education(No.GJJ170229)the China Postdoctoral Science Foundation(No.2019M652282)the Postdoctoral Science Foundation of Jiangxi Province(No.2018KY37)the Technology Plan Landing Project of Jiangxi Provincial Department of Education(No.GCJ2011-243).
文摘For a polymer/polymer dismissible blend with two crystallizable components,the crystallization behavior of different components and the reciprocal influences between different crystals are interesting and important,but did not investigate in detail.In this study,the L-poly(lactic acid)/polypropylene(PLLA/PP)blends with different weight ratios were prepared by melt mixing and the crystallization behavior of the blends were investigated.Results showed that the crystalline structures of PLLA and PP were not altered by the composition.For the crystallization of PLLA,both the diffusion of chain segments and crystallization rate were enhanced under the existence of PP crystals.For the crystallization of PP,its crystallization rate was depressed under the existence of amorphous PLLA molecular chains.When the PP crystallized from the existence of PLLA crystals,although the diffusion rate of PP was reduced by PLLA crystals,the nucleation positions were obviously enhanced,which accelerated the formation of PP crystals.This investigation would supply more basic data for the application of PLLA/PP blend.
基金supported by the National Natural Science Foundation of China(Nos.U21A2063,52372071,52002376,and 52302076)the National Key R&D Program of China(No.2021YFB3702300)+1 种基金the Liaoning Revitalization Talents Program(No.XLYC2002018)the International Partnership Program of the Chinese Academy of Sciences(No.172GJHZ2022094FN).
文摘Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the crystallization behavior of Yb-based coatings against CMAS deposits.The reaction products of solid solutions with compositions traversing the Sc_(2)O_(3)–Yb_(2)O_(3)system indicate that Sc^(3+)tends to form[BO_(6)]coordination polyhedra in the crystal structure to promote the formation of garnet and diopside,while Yb^(3+)occupies 7-,8-,and 9-coordinate sites to crystallize apatite and silicocarnotite.The transformation of crystalline products from apatite/silicocarnotite to garnet/diopside greatly improves the efficiency of CMAS melt consumption and facilitates the prevention of its further penetration and corrosion.Based on the commonality of cation occupancy in crystallography,an A(CaO+YbO_(1.5))–B(ScO_(1.5)+MgO+AlO_(1.5))–T(SiO_(2))pseudoternary phase diagram is established,which has great potential for describing phase equilibrium in coating-deposit systems and can provide guidance for the compositional design of corrosion-resistant coatings.
基金This work was financially supported by the Ministry of Education of China (No.KB20026)
文摘Lithium aluminosilicate (LAS) glasses are generally difficult to prepare because of their high melting temperature. In this study, the preparation of LAS glasses was achieved at a relatively low melting temperature. The batch containing MgO-ZnO-LiEO- Al2O3-SiO2 was melted in a platinum crucible at 1550℃ for 2 h and was then followed by two- or three-step heat treatment processes for nucleation and crystal growth. The characterizations were carried out by differential thermal analysis, X-ray diffraction, infrared spectroscopy, scanning electron microscopy, and UV-Vis-NIR scanning spectrophotometry. The hexagonal stuffed β-eucryptite solid solution crystallized at 840-960℃. Most of the hexagonal β-eucryptite solid solution transformed into the tetragonal β-spodumene solid solution at 1100℃. Almost all the aluminum atoms entered into the tetrahedral sites in the aluminosilicate network of the 6- eucryptite/β-quartz solid solution. All of the Al atoms did not belong to the aluminosilicate network of the β-spodumene solid solution. The glass ceramic with a mean grain size of 10-20 nm is transparent, the transmittance reaches -85% in the visible light wavelength.
基金Funded by the Jiangxi Provincial Department of Education(KJLD13008)the National Natural Science Foundation of China(number 51362020)the Research Fund for the Doctoral Program of Higher Education(20123601110006)
文摘B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with different Al_2O_3 contents(1mol%, 3mol%, 5mol%, and 7mol%) was prepared, and it was intended to be used as lead-free and low-melting glass sealants for solid oxide fuel cells. The effects of Al_2O_3 content on the structures, thermal properties, and sintering behaviors of the B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass were investigated in detail. The Al_2O_3 content largely influenced the structures and thermal properties of the glass. When the Al_2O_3 content 5mol%, the transition temperature of the glass decreased with the Al_2O_3 content, while the crystallization temperature increased with the Al_2O_3 content. However, higher Al_2O_3 content degraded the stability of the glass. The B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with 5 mol% Al_2O_3 content exhibits the optimal sintering densification characteristics and can be used as glass sealants for solid oxide fuel cells.
基金Financial support for this study was provided by the National Natural Science Foundation of China(Project No.50006014)
文摘Nanosized amorphous TiO2 powders with a specific surface area of 501 m2·g-1 were prepared by hydrolysis. After calcined at 400℃ for 2 h, the prepared amorphous TiO2 powders were fully transformed into anatase crystallites with a specific surface area of 141 m2·g-1. Differential scanning calorimetric (DSC) experiments were performed on the samples of nanosized amorphous TiO2 mixed with microsized anatase, nanosized anatase, or nanosized α-Al2O3 respectively. Effects of sample packing, anatase addition, or α-Al2O3 addition on the crystallization behavior of nanosized amorphous TiO2 were analyzed.
文摘The mixture model of Al_(85)Y_4Nd_4Ni_7 alloy in which a partiallycrystallized amorphous alloy is regarded as a nanocornposite of an Al nanoparticle and a remainingamorphous matrix is presented. Its evolution in the process of crystallization has been investigatedby differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electronmicroscopy (TEM). Mainly amorphous structure with alpha-Al nanocrystals embedded in the amorphousmatrix has been revealed by melt spining the alloy. Crystallization is showed to occur in threestages: (1) crystallization of amorphous alloy and formation of AINiY, AINdNi and unknowncrystalline phases, (2) formation of Al_3 Y and Al_3Nd, and (3) formation of Al_3Ni.
基金Supported by National Natural Science Foundation of China and Shanghai Baosteel Group Corporation(50174024)
文摘Investigated the effect of an addition of CaF2 on the crystallization of a glass-ceramic with abrasion resistance. X-ray diffraction, differential thermal analysis and scanning electron microscopy were used to determine the effect. The results showed that a suitable addition of CaF2 promoted crystallization by forming an interme- diate crystalline phase. CaF2 can decrease the temperature and active energy of the base-glass for crystallization. When 4 mass-% of CaF2-fraction is added in the glass, the crystallization temperature and active energy is 936 ℃and 172.75 kJ/mol respectively. When CaF2 is increased to 6 mass-%, the temperature and active energy decrease to 890 ℃ and 88.81 kJ/mol. CaF2 is an efficient nucleating agent for the glass-ceramics with abrasion resistant, the optimal content of CaF2 is about 6 mass-%.
文摘The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our laboratory are applied to describe its nonisothermal crystallization behavior, the new one is confirmed to be the best and convenient. By determining kinetic parameters, the analysis of the nonisothermal crystallization behavior is performed. According to Kissinger method, the crystallization activation energy of P3DDT is also evaluated.