Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by...Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.展开更多
During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle w...During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials.展开更多
The ordering of the α-Fe(Si) crystallization phase in annealed Fe73.5Cu1Mo3Si13.5B9 alloy has been studied using XRD method. The α-Fe(Si) phase in Fe73.5Cu1Mo3Si13.5B9 alloy annealed at 460℃ for 1 h consists of th...The ordering of the α-Fe(Si) crystallization phase in annealed Fe73.5Cu1Mo3Si13.5B9 alloy has been studied using XRD method. The α-Fe(Si) phase in Fe73.5Cu1Mo3Si13.5B9 alloy annealed at 460℃ for 1 h consists of the DO3-type ordered region with spherical shape and disordered region. The size of DO3 ordered region increases with the annealing temperature. When the annealing temperature is 560℃, the size of the ordered region in the α-Fe(Si) grain is 14.0nm,which is nearly as large as that of the α-Fe(Si) grain (14.2 nm) and the degree of order of the α-Fe(Si) phase is about 0.78. When Fe73.5Cu1 Mo3Si13.5B9 amorphous alloy is annealed at 520℃, with the increment of the annealing time, the shape of the DO3 ordered region in the α-Fe(Si) phase is spheroidal at the beginning of the annealing and becomes spherical and has asize of 12.8 nm when the annealing time is 60 min. In addition, the DO3 superlattice lines of the α-Fe(Si) phase will vanish if Fe73.5Cu1Mo3Si13.5 B9 amorphous alloy is annealed for 1 h at 750℃.展开更多
Oxides with different crystal phases can have important effects on the configuration of surface atoms,which can further affect the distribution of hydrogenation sites and acidic sites as well as the competitions of th...Oxides with different crystal phases can have important effects on the configuration of surface atoms,which can further affect the distribution of hydrogenation sites and acidic sites as well as the competitions of these varied types of catalytic sites.This could be potentially used to tailor the distribution of the products.In this study,zirconium oxides with different crystal phases supported copper catalysts were prepared for the hydrogenation of the biomass-derived furfural,vanillin,etc.The results showed that both calcination temperature and Cu species affected the shift of zirconia from tetragonal phase to the monoclinic phase.Monoclinic zirconia supported copper catalyst can effectively catalyze the hydrogenation of furfural to furfuryl alcohol via hydrogenation route due to its low amount of Brønsted acidic sites,although the surface area and the exposed metallic Cu surface area were much lower than the tetragonal zirconia supported copper catalyst.Zirconia with tetragonal or tetragonal/monoclinic phases supported copper catalysts contain abundant acidic sites and especially the Br?nsted acidic sites,which catalyzed mainly the conversion of furfural via the acid-catalyzed routes such as the acetalization,rather than the hydrogenation.The acidic sites over the Cu/ZrO_(2)catalyst played more predominant roles than the hydrogenation sites in determining the conversion of the organics like furfural and vanillin.展开更多
Using the phase field crystal approach, the crystallization process within the liquid-solid coexistence region is inves- tigated for a square lattice on an atomic scale. Two competing growth modes, i.e., the diffusion...Using the phase field crystal approach, the crystallization process within the liquid-solid coexistence region is inves- tigated for a square lattice on an atomic scale. Two competing growth modes, i.e., the diffusion-controlled growth through long-range atomic migration in liquid and the diffusionless growth through local atom rearrangement, which give rise to two completely different crystallization behaviors, are compared. In the diffusion-controlled regime, the interface migrates in a layerwise manner, leading to a gradual change of crystal morphology from truncated square to four-fold symmetric dendrite with the increase of driving force. For the diffusionless growth mode, a single crystal with no significant density change occupies the whole system at a faster rate while exhibiting a small growth anisotropy. The competition between these two modes is also discussed from the key input of the phase field crystal model: the correlation function.展开更多
In this paper the experimental results associated until the phase separation and nucleation and crystallization of chalcogenidc glasses are described. Experi-ments demonstrate that the phas separation may be affected ...In this paper the experimental results associated until the phase separation and nucleation and crystallization of chalcogenidc glasses are described. Experi-ments demonstrate that the phas separation may be affected by small amount of additives. It has been found that some chalcogenide glasses could be converted into glass-ceramics without phase separation. The different mechanisms of nucleated crystallization of chalcogenide glasses are discussed and propossed.展开更多
Y-Si compounds with the composition of Y:Si = 1:2 were fabricated using Yttrium and Silicon raw powders with low and high purity in various atmospheres and temperatures. Although the latest Y-Si phase diagram shows th...Y-Si compounds with the composition of Y:Si = 1:2 were fabricated using Yttrium and Silicon raw powders with low and high purity in various atmospheres and temperatures. Although the latest Y-Si phase diagram shows that the α- and β-YSi<sub>2</sub> phases are the stable phases for the stoichiometric composition of Y:Si = 1:2, the current experimental results suggest that the high temperature phase with the hexagonal structure, β-Y<sub>3</sub>Si<sub>5</sub>, would be the stable phase for this composition, and that the high temperature phase with the orthorhombic structure, β-YSi<sub>2</sub>, would be the meta-stable phase with high oxygen impurity content. It was demonstrated that YSi<sub>2</sub> powders possess much superior chemical stability than Yttrium metal. It was found that the best dispersing solvent was 2-propanol for YSi<sub>2</sub> powder.展开更多
After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data...After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data retention ability(189°C for 10 y). The crystallization of Sb in superlattice-like Sb/SiO_2 thin films is restrained by the multilayer interfaces. The reversible resistance transition can be achieved by an electric pulse as short as 8 ns for the Sb(3 nm)/SiO_2(7 nm)-based phase change memory cell. A lower operation power consumption of 0.09 m W and a good endurance of 3.0 × 10~6 cycles are achieved. In addition, the superlattice-like Sb(3 nm)/SiO_2(7 nm) thin film shows a low thermal conductivity of 0.13 W/(m·K).展开更多
Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anod...Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anode of the Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies(Ov-BMO-Cu)are in-situ generated by phase separation and hydrogen etching using nanoporous Cu-Mn alloy as selfsacrificial templates.On this basis,we have elucidated the relationship between the phase evolution,oxygen vacancies and sodium-ion storage mechanisms,further demonstrating the evolution of oxygen vacancies and the inhibition effect of manganese oxides as an“anchor”on grain aggregation of copper oxides.The kinetic analyses confirm that the expanded lattice space and increased oxygen vacancies of cycled Ov-BMO-Cu synergistically guarantee effective sodium-ion diffusion and storage mechanisms.Therefore,the Ov-BMO-Cu electrode exhibits higher reversible capacities of 4.04 mA h cm^(-2)at 0.2 mA cm^(-2)after 100 cycles and 2.20 m A h cm^(-2)at 1.0 mA cm^(-2)after 500 cycles.Besides,the presodiated Ov-BMO-Cu anode delivers a considerable reversible capacity of 0.79 m A h cm^(-2)at 1.0 mA cm^(-2)after 60 cycles in full cells with Na_(3)V_(2)(PO_(4))_(3)cathode,confirming its outstanding practicality.Thus,this work is expected to provide enlightenment for designing high-capacity bimetallic oxide anodes.展开更多
Low-cost thermal insulation porous ceramics with uniform pore diameter and low bulk density were prepared with soda-ash dregs and felsic tailings.We investigated the effect of temperature,foaming agent,fluxing agent,A...Low-cost thermal insulation porous ceramics with uniform pore diameter and low bulk density were prepared with soda-ash dregs and felsic tailings.We investigated the effect of temperature,foaming agent,fluxing agent,Al_(2)O_(3)and CaO content on the pore structure and crystal phase of porous ceramics.The effect of Ca^(2+)in soda-ash dregs on the preparation of quartz-feldspar based porous ceramics was studied.The results showed that the contribution of Ca^(2+)to the preparation of porous ceramics in this system was mainly to accelerate the Si-O bond fracture and reduce the sintering temperature at the initial stage of sintering,which destroyed the needle-like feldspar in the high temperature melt and reduced the melt viscosity,thus reduced the foaming resistance and promoted the porous products with uniform pore size distribution.The Ca^(2+)content on the high side can participate in the formation of crystals in sintering.The generated needle-like diopside and augite,which have small length-diameter ratio,will negligibly change in the viscosity of melt at high temperatures,and their inhibition effect on pores is not as good as that of feldspar with large length-diameter ratio,resulting in the merger and collapse of pores.But the increase of diopside and augite can improve the compressive strength of porous products to some extent.Porous ceramic products containing needle-like feldspar phase can be prepared by using two kinds of solid waste,which can improve the compressive strength of the products and reduce the raw material cost and energy consumption while comprehensively utilizing the double solid waste.The optimal product has a bulk density of 0.45 g/cm^(3),a compressive strength of 3.17 MPa,and a thermal conductivity of 0.11 W/(m·K).展开更多
CuCe/Ti-A and CuCe/Ti-R catalysts were prepared using anatase TiO_(2)(TiO_(2)-A)and rutile TiO_(2)(TiO_(2)-R)as supports using the incipient wetness impregnation method for the carbon monoxide(CO)oxidation reaction an...CuCe/Ti-A and CuCe/Ti-R catalysts were prepared using anatase TiO_(2)(TiO_(2)-A)and rutile TiO_(2)(TiO_(2)-R)as supports using the incipient wetness impregnation method for the carbon monoxide(CO)oxidation reaction and were compared with a CuCe-C catalyst prepared using the co-precipitation method.The CuCe/Ti-A catalyst exhibited the highest activity,with complete CO conversion at 90℃,when the gas hourly space velocity was 24000 ml.g^(-1).h^(-1) and the CO concentration was approximately 1%(vol).A series of characterizations of the catalysts revealed that the CuCe/Ti-A catalyst has a larger specific surface area,more Cu+species and oxygen vacancies,and the Cu species of CuCe/Ti-A catalyst is more readily reduced.In situ FT-IR results indicate that the bicarbonate species generated on the CuCe/Ti-A catalyst have lower thermal stability than the carbonate species on CuCe/Ti-R,and will decompose more readily to form CO_(2).Therefore,CuCe/Ti-A has excellent catalytic activity for CO oxidation.展开更多
Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structu...Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.展开更多
Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structu...Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.展开更多
Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites wer...Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.展开更多
The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially ...The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially at the interface,and the averagesize of the voids increases with both the time and strain rate.There is an obvious coalescence of the voids at a large strain rate whenthe deformation is applied along the interface under both constant and cyclic strain rate conditions.For the cyclic strain rate appliedalong the interface,the growth exponent of Kirkendall voids increases with increasing the strain rate when the strain rate is largerthan1.0×10-6,while it increases initially and then decreases when the strain rate is smaller than9.0×10?7.The growth exponent ofKirkendall voids increases initially and then decreases gradually with increasing the length of cyclic period under a square-waveform constant strain rate.展开更多
The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of ...The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of metal oxides on the catalytic activity of these oxides is still ambiguous.Herein,typical metal oxides(ZnO/ZrO_(2))with different crystal phases(monoclinic(m‐ZrO_(2))and tetragonal(t‐ZrO_(2)))were employed for syngas conversion.The(ZnO/m‐ZrO_(2)+SAPO‐34)composite catalyst exhibited 80.5%selectivity for C_(2)–C_(4) olefins at a CO conversion of 27.9%,where the results are superior to those(CO conversion of 16.4%and C_(2)–C_(4) olefin selectivity of 76.1%)obtained over(ZnO/t‐ZrO_(2)+SAPO‐34).The distinct differences are ascribed to the larger number of hydroxyl groups,Lewis acid sites,and oxygen defects in ZnO/m‐ZrO_(2) compared to ZnO/t‐ZrO_(2).These features result in the formation of more formate and methoxy intermediate species on the ZnO/m‐ZrO_(2) oxides during syngas conversion,followed by the formation of more light olefins over SAPO‐34.The present findings provide useful information for the design of highly efficient ZrO_(2)‐based catalysts for syngas conversion.展开更多
In this paper,we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals.Two groups of lasing peaks,of which the full widith at half maximum is about...In this paper,we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals.Two groups of lasing peaks,of which the full widith at half maximum is about 0.3 nm,are clearly observed.The shorter-and longer-wavelength modes are associated with the excitation of the single laser dye(DCM) monomers and dimers respectively.The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light.When the polarization of the pump light is rotated from 0?to 90?,the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases.In addition,a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed.展开更多
Many phases appear in BaLn 2Mn 2O 7 family (Ln=rare earth) belonging to one of the Ruddlesden-Popper type compounds, depending upon the experimental conditions such as heating conditions when prepared and compositi...Many phases appear in BaLn 2Mn 2O 7 family (Ln=rare earth) belonging to one of the Ruddlesden-Popper type compounds, depending upon the experimental conditions such as heating conditions when prepared and composition. Some of these phases were characterized by powder X-ray diffraction method using Rietveld analysis. These phases have only a little difference in crystal structure which has fundamentally K 2NiF 4 type structure, although the X-ray diffraction patterns are clearly different: a little deformation or tilting of the oxygen octahedron surrounding a central manganese ion composing the main frame of this structure induce these different diffraction patterns. Phase behavior of these compounds, mainly the detailed relation between various phases in BaTb 2Mn 2O 7, was refined including the data of high temperature X-ray diffractometry.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconst...Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.展开更多
基金The project was supported by the National Key R&D Program of China(2021YFF0500702)Natural Science Foundation of Shanghai(22JC1404200)+3 种基金Program of Shanghai Academic/Technology Research Leader(20XD1404000)Natural Science Foundation of China(U22B20136,22293023)Science and Technology Major Project of Inner Mongolia(2021ZD0042)the Youth Innovation Promotion Association of CAS。
文摘Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.
基金supported by National Natural Science Foundation of China (No.50574083)
文摘During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials.
文摘The ordering of the α-Fe(Si) crystallization phase in annealed Fe73.5Cu1Mo3Si13.5B9 alloy has been studied using XRD method. The α-Fe(Si) phase in Fe73.5Cu1Mo3Si13.5B9 alloy annealed at 460℃ for 1 h consists of the DO3-type ordered region with spherical shape and disordered region. The size of DO3 ordered region increases with the annealing temperature. When the annealing temperature is 560℃, the size of the ordered region in the α-Fe(Si) grain is 14.0nm,which is nearly as large as that of the α-Fe(Si) grain (14.2 nm) and the degree of order of the α-Fe(Si) phase is about 0.78. When Fe73.5Cu1 Mo3Si13.5B9 amorphous alloy is annealed at 520℃, with the increment of the annealing time, the shape of the DO3 ordered region in the α-Fe(Si) phase is spheroidal at the beginning of the annealing and becomes spherical and has asize of 12.8 nm when the annealing time is 60 min. In addition, the DO3 superlattice lines of the α-Fe(Si) phase will vanish if Fe73.5Cu1Mo3Si13.5 B9 amorphous alloy is annealed for 1 h at 750℃.
基金supported by the National Natural Science Foundation of China(No.51876080)the Program for Taishan Scholars of Shandong Province Government。
文摘Oxides with different crystal phases can have important effects on the configuration of surface atoms,which can further affect the distribution of hydrogenation sites and acidic sites as well as the competitions of these varied types of catalytic sites.This could be potentially used to tailor the distribution of the products.In this study,zirconium oxides with different crystal phases supported copper catalysts were prepared for the hydrogenation of the biomass-derived furfural,vanillin,etc.The results showed that both calcination temperature and Cu species affected the shift of zirconia from tetragonal phase to the monoclinic phase.Monoclinic zirconia supported copper catalyst can effectively catalyze the hydrogenation of furfural to furfuryl alcohol via hydrogenation route due to its low amount of Brønsted acidic sites,although the surface area and the exposed metallic Cu surface area were much lower than the tetragonal zirconia supported copper catalyst.Zirconia with tetragonal or tetragonal/monoclinic phases supported copper catalysts contain abundant acidic sites and especially the Br?nsted acidic sites,which catalyzed mainly the conversion of furfural via the acid-catalyzed routes such as the acetalization,rather than the hydrogenation.The acidic sites over the Cu/ZrO_(2)catalyst played more predominant roles than the hydrogenation sites in determining the conversion of the organics like furfural and vanillin.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51174168 and 51274167)the Foundation for Fundamental Research of Northwestern Polytechnical University,China(Grant No.JC20120222)
文摘Using the phase field crystal approach, the crystallization process within the liquid-solid coexistence region is inves- tigated for a square lattice on an atomic scale. Two competing growth modes, i.e., the diffusion-controlled growth through long-range atomic migration in liquid and the diffusionless growth through local atom rearrangement, which give rise to two completely different crystallization behaviors, are compared. In the diffusion-controlled regime, the interface migrates in a layerwise manner, leading to a gradual change of crystal morphology from truncated square to four-fold symmetric dendrite with the increase of driving force. For the diffusionless growth mode, a single crystal with no significant density change occupies the whole system at a faster rate while exhibiting a small growth anisotropy. The competition between these two modes is also discussed from the key input of the phase field crystal model: the correlation function.
文摘In this paper the experimental results associated until the phase separation and nucleation and crystallization of chalcogenidc glasses are described. Experi-ments demonstrate that the phas separation may be affected by small amount of additives. It has been found that some chalcogenide glasses could be converted into glass-ceramics without phase separation. The different mechanisms of nucleated crystallization of chalcogenide glasses are discussed and propossed.
文摘Y-Si compounds with the composition of Y:Si = 1:2 were fabricated using Yttrium and Silicon raw powders with low and high purity in various atmospheres and temperatures. Although the latest Y-Si phase diagram shows that the α- and β-YSi<sub>2</sub> phases are the stable phases for the stoichiometric composition of Y:Si = 1:2, the current experimental results suggest that the high temperature phase with the hexagonal structure, β-Y<sub>3</sub>Si<sub>5</sub>, would be the stable phase for this composition, and that the high temperature phase with the orthorhombic structure, β-YSi<sub>2</sub>, would be the meta-stable phase with high oxygen impurity content. It was demonstrated that YSi<sub>2</sub> powders possess much superior chemical stability than Yttrium metal. It was found that the best dispersing solvent was 2-propanol for YSi<sub>2</sub> powder.
基金Supported by the National Natural Science Foundation of China under Grant No 11774438the Natural Science Foundation of Jiangsu Province under Grant No BK20151172+2 种基金the Changzhou Science and Technology Bureau under Grant No CJ20160028the Qing Lan Project,the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences
文摘After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data retention ability(189°C for 10 y). The crystallization of Sb in superlattice-like Sb/SiO_2 thin films is restrained by the multilayer interfaces. The reversible resistance transition can be achieved by an electric pulse as short as 8 ns for the Sb(3 nm)/SiO_2(7 nm)-based phase change memory cell. A lower operation power consumption of 0.09 m W and a good endurance of 3.0 × 10~6 cycles are achieved. In addition, the superlattice-like Sb(3 nm)/SiO_2(7 nm) thin film shows a low thermal conductivity of 0.13 W/(m·K).
基金supported by the Natural Science Foundation of China(5207123251871165)。
文摘Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anode of the Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies(Ov-BMO-Cu)are in-situ generated by phase separation and hydrogen etching using nanoporous Cu-Mn alloy as selfsacrificial templates.On this basis,we have elucidated the relationship between the phase evolution,oxygen vacancies and sodium-ion storage mechanisms,further demonstrating the evolution of oxygen vacancies and the inhibition effect of manganese oxides as an“anchor”on grain aggregation of copper oxides.The kinetic analyses confirm that the expanded lattice space and increased oxygen vacancies of cycled Ov-BMO-Cu synergistically guarantee effective sodium-ion diffusion and storage mechanisms.Therefore,the Ov-BMO-Cu electrode exhibits higher reversible capacities of 4.04 mA h cm^(-2)at 0.2 mA cm^(-2)after 100 cycles and 2.20 m A h cm^(-2)at 1.0 mA cm^(-2)after 500 cycles.Besides,the presodiated Ov-BMO-Cu anode delivers a considerable reversible capacity of 0.79 m A h cm^(-2)at 1.0 mA cm^(-2)after 60 cycles in full cells with Na_(3)V_(2)(PO_(4))_(3)cathode,confirming its outstanding practicality.Thus,this work is expected to provide enlightenment for designing high-capacity bimetallic oxide anodes.
基金Supported by the National Natural Science Foundation of China(No.51674161)Major Basic Research Projects of Shandong Province Natural Science Foundation(No.ZR2017ZC0735)+1 种基金Open Topic of Key Laboratory of Gold Mineralization Processes and Resource Utilization Subordinated to the Ministry of Land and Resources and Key Laboratory of Metallogenic Geological Process and Resources Utilization in Shandong Province(No.Kfkt201812)Research on Precious Metal Mineral Achievement Integration and Tailings Comprehensive Utilization in Shandong Province(Shandong Geological Exploration Document:[2018]No.10)。
文摘Low-cost thermal insulation porous ceramics with uniform pore diameter and low bulk density were prepared with soda-ash dregs and felsic tailings.We investigated the effect of temperature,foaming agent,fluxing agent,Al_(2)O_(3)and CaO content on the pore structure and crystal phase of porous ceramics.The effect of Ca^(2+)in soda-ash dregs on the preparation of quartz-feldspar based porous ceramics was studied.The results showed that the contribution of Ca^(2+)to the preparation of porous ceramics in this system was mainly to accelerate the Si-O bond fracture and reduce the sintering temperature at the initial stage of sintering,which destroyed the needle-like feldspar in the high temperature melt and reduced the melt viscosity,thus reduced the foaming resistance and promoted the porous products with uniform pore size distribution.The Ca^(2+)content on the high side can participate in the formation of crystals in sintering.The generated needle-like diopside and augite,which have small length-diameter ratio,will negligibly change in the viscosity of melt at high temperatures,and their inhibition effect on pores is not as good as that of feldspar with large length-diameter ratio,resulting in the merger and collapse of pores.But the increase of diopside and augite can improve the compressive strength of porous products to some extent.Porous ceramic products containing needle-like feldspar phase can be prepared by using two kinds of solid waste,which can improve the compressive strength of the products and reduce the raw material cost and energy consumption while comprehensively utilizing the double solid waste.The optimal product has a bulk density of 0.45 g/cm^(3),a compressive strength of 3.17 MPa,and a thermal conductivity of 0.11 W/(m·K).
基金supported by the National Natural Science Foundation of China(U21A20306,U20A20152)Natural Science Foundation of Hebei Province(B2022202077).
文摘CuCe/Ti-A and CuCe/Ti-R catalysts were prepared using anatase TiO_(2)(TiO_(2)-A)and rutile TiO_(2)(TiO_(2)-R)as supports using the incipient wetness impregnation method for the carbon monoxide(CO)oxidation reaction and were compared with a CuCe-C catalyst prepared using the co-precipitation method.The CuCe/Ti-A catalyst exhibited the highest activity,with complete CO conversion at 90℃,when the gas hourly space velocity was 24000 ml.g^(-1).h^(-1) and the CO concentration was approximately 1%(vol).A series of characterizations of the catalysts revealed that the CuCe/Ti-A catalyst has a larger specific surface area,more Cu+species and oxygen vacancies,and the Cu species of CuCe/Ti-A catalyst is more readily reduced.In situ FT-IR results indicate that the bicarbonate species generated on the CuCe/Ti-A catalyst have lower thermal stability than the carbonate species on CuCe/Ti-R,and will decompose more readily to form CO_(2).Therefore,CuCe/Ti-A has excellent catalytic activity for CO oxidation.
文摘Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.
文摘Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.
文摘Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.
基金Projects(51275178,51405162,51205135) supported by the National Natural Science Foundation of ChinaProjects(20110172110003,20130172120055) supported by the Doctoral Program of Higher Education of China
文摘The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially at the interface,and the averagesize of the voids increases with both the time and strain rate.There is an obvious coalescence of the voids at a large strain rate whenthe deformation is applied along the interface under both constant and cyclic strain rate conditions.For the cyclic strain rate appliedalong the interface,the growth exponent of Kirkendall voids increases with increasing the strain rate when the strain rate is largerthan1.0×10-6,while it increases initially and then decreases when the strain rate is smaller than9.0×10?7.The growth exponent ofKirkendall voids increases initially and then decreases gradually with increasing the length of cyclic period under a square-waveform constant strain rate.
文摘The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of metal oxides on the catalytic activity of these oxides is still ambiguous.Herein,typical metal oxides(ZnO/ZrO_(2))with different crystal phases(monoclinic(m‐ZrO_(2))and tetragonal(t‐ZrO_(2)))were employed for syngas conversion.The(ZnO/m‐ZrO_(2)+SAPO‐34)composite catalyst exhibited 80.5%selectivity for C_(2)–C_(4) olefins at a CO conversion of 27.9%,where the results are superior to those(CO conversion of 16.4%and C_(2)–C_(4) olefin selectivity of 76.1%)obtained over(ZnO/t‐ZrO_(2)+SAPO‐34).The distinct differences are ascribed to the larger number of hydroxyl groups,Lewis acid sites,and oxygen defects in ZnO/m‐ZrO_(2) compared to ZnO/t‐ZrO_(2).These features result in the formation of more formate and methoxy intermediate species on the ZnO/m‐ZrO_(2) oxides during syngas conversion,followed by the formation of more light olefins over SAPO‐34.The present findings provide useful information for the design of highly efficient ZrO_(2)‐based catalysts for syngas conversion.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474021 and 51333001)the Key Program for International S&T Cooperation Projects of China(Grant No.2013DFB50340)+1 种基金the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120001130005)the Key(Key Grant)Project of Chinese Ministry of Education(Grant No.313002)
文摘In this paper,we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals.Two groups of lasing peaks,of which the full widith at half maximum is about 0.3 nm,are clearly observed.The shorter-and longer-wavelength modes are associated with the excitation of the single laser dye(DCM) monomers and dimers respectively.The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light.When the polarization of the pump light is rotated from 0?to 90?,the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases.In addition,a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed.
文摘Many phases appear in BaLn 2Mn 2O 7 family (Ln=rare earth) belonging to one of the Ruddlesden-Popper type compounds, depending upon the experimental conditions such as heating conditions when prepared and composition. Some of these phases were characterized by powder X-ray diffraction method using Rietveld analysis. These phases have only a little difference in crystal structure which has fundamentally K 2NiF 4 type structure, although the X-ray diffraction patterns are clearly different: a little deformation or tilting of the oxygen octahedron surrounding a central manganese ion composing the main frame of this structure induce these different diffraction patterns. Phase behavior of these compounds, mainly the detailed relation between various phases in BaTb 2Mn 2O 7, was refined including the data of high temperature X-ray diffractometry.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)the State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.