期刊文献+
共找到1,556篇文章
< 1 2 78 >
每页显示 20 50 100
Combination of methylthio-chemistry with living crystallization-driven self-assembly toward uniformπ-conjugated nanostructures with antibacterial activity,surface tailorability,tunable morphology and dimension
1
作者 Chuyu Duan Binbin Xu +3 位作者 Ruru Li Xiaoyu Huang Shaoliang Lin Chun Feng 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第7期2341-2352,共12页
Living crystallization-driven self-assembly(CDSA)provides robust access to uniformπ-conjugated nanostructures(CNSs)from block copolymers(BCPs)containing a crystallineπ-conjugated segment with controlled dimension,mo... Living crystallization-driven self-assembly(CDSA)provides robust access to uniformπ-conjugated nanostructures(CNSs)from block copolymers(BCPs)containing a crystallineπ-conjugated segment with controlled dimension,morphology and composition,which show appealing applications in biomedicine,photocatalysis and microelectronics.To further expand the application spectrum of these CNSs,the development of facile strategies toward diverse CNSs with varying structures/functionalities is highly desired.Herein,BCPs consisting of oligo(p-phenylene ethynylene)-b-poly(polypropyl-3-methanethiol acrylate)(OPE_(9)-bPMTPA35and OPE_(9)-b-PMTPA_(58);the subscript represents the number of repeat unit of each block)consisting of a crystallineπ-conjugated core-forming OPE_(9)segment and a corona-forming PMTPA block are synthesized.By efficient“click-type”alkylation of methylthio groups,OPE_(9)-b-PMTPA with varying contents of sulfonium unit is obtained.Uniform ribbon-like micelles with different widths and lengths can then be generated in a controlled manner via the self-seeding approach of living CDSA.Additionally,negatively charged polymeric and Ag nanoparticles can be immobilized on sulfonium/methylthio-containing shells by taking advantage of electrostatic attraction and coordination interaction,respectively.Interestingly,the ribbon-like micelles with positively charged shells exhibit antibacterial activity against E.coli.Given the ease of modification of PMTPA-based shell and attractive opto-electronic/photocatalytic properties ofπ-conjugated units,the combination of methylthio-chemistry and living CDSA opens a new avenue to generate multi-functional CNSs for widespread applications from biomedicine to photocatalysis. 展开更多
关键词 crystallization-driven self-assembly block copolymer π-conjugated nanostructure methylthio-chemistry
原文传递
Living Crystallization-Driven Self-Assembly of Oligo(p-phenylene vinylene)-Containing Block Copolymers:Impact of Branched Structure of Alkyl Side Chain ofπ-Conjugated Segment 被引量:1
2
作者 Yang Song Bo Xiang +2 位作者 Xiao-Yu Huang Guo-Lin Lu Chun Feng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第4期574-584,I0008,共12页
The structure of side chains ofπ-conjugated segments is a critical factor determining living crystallization-driven self-assembly(CDSA),a versatile platform to generate fiber-like nanostructures with precise length a... The structure of side chains ofπ-conjugated segments is a critical factor determining living crystallization-driven self-assembly(CDSA),a versatile platform to generate fiber-like nanostructures with precise length and composition.Herein,we design and synthesize three block copolymers(BCPs)containing same corona-forming poly(N-isopropyl acrylamide)(PNIPAM)segment,but different core-formingπ-conjugated oligo(p-phenylene vinylene)(OPV)with linear pentyl(l-OPV),racemic 2-methyl butyl(r-OPV)and stereo-regular chiral(S)-2-methyl butyl(c-OPV)side chains,respectively.By using these BCPs of l-OPV-b-PNIPAM_(47),r-OPV-b-PNIPAM_(47)and c-OPV-b-PNIPAM_(47)as model,we aim to get a deep insight into how steric and stereo-regular effect induced by branched alkyl side chains of OPV segment affects the living CDSA.The results showed that l-OPV-b-PNIPAM_(47)exhibits typical characteristics of self-seeding and seeded growth of living CDSA to give uniform fiber-like micelles of controlled length.On the contrary,r-OPV-b-PNIPAM_(47)and c-OPV-b-PNIPAM_(47)with branched racemic and stereo-regular chiral alkyl side chains are more prone to self-nucleation during the micellar elongation to give short and polydisperse fiber-like micelles.The obvious selfnucleation during the micellar elongation of r-OPV-b-PNIPAM_(47)and c-OPV-b-PNIPAM_(47)is due to the increase of steric repulsion with OPV units induced by branched alkyl side chains,not the stereo-irregular effect of racemic alkyl side chains. 展开更多
关键词 π-Conjugated polymer Nanofiber Living crystallization-driven self-assembly Structure effect
原文传递
Self-assembly of perovskite nanocrystals:From driving forces to applications
3
作者 Yi Li Fei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期561-578,I0013,共19页
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ... Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs. 展开更多
关键词 self-assembly Metal halide perovskite NANOCRYSTALS Driving forces
下载PDF
Alcohol solvent effect on the self-assembly behaviors of lignin oligomers
4
作者 Ya Ma Zhicheng Jiang +4 位作者 Yafei Luo Xingjie Guo Xudong Liu Yiping Luo Bi Shi 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期597-603,共7页
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th... The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly. 展开更多
关键词 Lignin oligomers Alcohol solvent self-assembly LNPs Solvent effects
下载PDF
Chitosan/Sodium Alginate Multilayer pH-Sensitive Films Based on Layer-by-Layer Self-Assembly for Intelligent Packaging
5
作者 Mingxuan He Yahui Zheng +4 位作者 Jiaming Shen Jiawei Shi Yongzheng Zhang Yinghong Xiao Jianfei Che 《Journal of Renewable Materials》 EI CAS 2024年第2期215-233,共19页
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium... The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging. 展开更多
关键词 CHITOSAN ALGINATE layer-by-layer self-assembly PH-SENSITIVE multilayer films
下载PDF
Hollow tubes constructed by carbon nanotubes self-assembly for CO_(2) capture
6
作者 CHEN Xu-rui WU Jun +1 位作者 GU Li CAO Xue-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2256-2267,共12页
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac... Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture. 展开更多
关键词 carbon nanotubes self-assembly hollow tubes CO_(2) capture
下载PDF
A Non-parametric Gradient-Based Shape Optimization Approach for Solving Inverse Problems in Directed Self-Assemblyof Block Copolymers
7
作者 Daniil Bochkov Frederic Gibou 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1472-1489,共18页
We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t... We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA). 展开更多
关键词 Block copolymers Directed self-assembly Inverse design Shape optimization Vertical interconnect accesses(VIA)
下载PDF
Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy
8
作者 Bowen Guo Zekun Wang +3 位作者 Lei Zheng Guang Mo Hongjun Zhou Dan Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期156-171,共16页
Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we ut... Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures. 展开更多
关键词 biomimetic self-assembly support electronic metal-support interactions oxygen evolution reaction single atoms catalysts
下载PDF
Layer by Layer Self-assembly Fiber-based Flexible Electrochemical Transistor
9
作者 谭艳 HAO Panpan +2 位作者 HE Yang ZHU Rufeng 王跃丹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期937-944,共8页
Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo... Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application. 展开更多
关键词 layer by layer self-assembly fiber based organic electrochemical transistor reduced graphene oxide PEDOT:PSS
下载PDF
Combination therapy to overcome ferroptosis resistance by biomimetic self-assembly nano-prodrug 被引量:1
10
作者 Yong Huang Yi Lin +7 位作者 Bowen Li Fu Zhang Chenyue Zhan Xin Xie Zhuo Yao Chongzhi Wu Yuan Ping Jianliang Shen 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第5期99-111,共13页
Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constru... Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib(Gefi),ferrocene(Fc)and dihydroartemisinin(DHA)for the combined therapy of both ferroptosis and apoptosis.In the tumor microenvironment,this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH.Interestingly,the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc,further executing tumor cell death with concomitant chemotherapy by Gefi.More importantly,this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis,as well as no noticeable side-effects during treatments.This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy. 展开更多
关键词 self-assembly nano-prodrug Ferroptosis APOPTOSIS Combination therapy
下载PDF
Efficient conversion of lignin waste and self-assembly synthesis of C@MnCo_(2)O_(4)for asymmetric supercapacitors with high energy density 被引量:1
11
作者 Jiahui Mu Cuihuan Li +3 位作者 Jiankang Zhang Xianliang Song Sheng Chen Feng Xu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1479-1487,共9页
Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;howe... Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;however,the improvement of their energy density remains a challenge.Here,we design a green and universal approach to prepare the composite electrode material,which is composed of lignin-phenolformaldehyde resins derived hierarchical porous carbon(LR-HPC)as conductive skeletons and the self-assembly manganese cobaltite(MnCo_(2)O_(4))nanocrystals as active sites.The synthesized C@MnCo_(2)O_(4)composite has an abundant porous structure and superior electronic conductivity,allowing for more charge/electron mass transfer channels and active sites for the redox reactions.The composite shows excellent electrochemical performance,such as the maximum specific capacitance of~726 mF cm^(-2)at 0.5 mV s^(-1),due to the significantly enhanced interactive interface between LR-HPC and MnCo_(2)O_(4)crystals.The assembled all-solid-state asymmetric supercapacitor,with the LR-HPC and C@MnCo_(2)O_(4)as cathode and anode,respectively,exhibits the highest volumetric energy density of 0.68 mWh cm^(-3)at a power density of 8.2 mW cm^(-3).Moreover,this device shows a high capacity retention ratio of~87.6%at 5 mA cm^(-2)after 5000 cycles. 展开更多
关键词 C@MnCo_(2)O_(4) LIGNIN self-assembly Asymmetrical supercapacitors
下载PDF
Interfacial Modification of NiO_(x)by Self-assembled Monolayer for Efficient and Stable Inverted Perovskite Solar Cells 被引量:1
12
作者 Xin Yu Yandong Wang +5 位作者 Liufei Li Shantao Zhang Shuang Gao Mao Liang Wen-Hua Zhang Shangfeng Yang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期553-562,I0080-I0091,I0095,共23页
NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve... NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability. 展开更多
关键词 Perovskite solar cell NiO_(x) self-assembled monolayer Interfacial engineering Stability
下载PDF
Analysis on the formation principle and present situation of nano phase state of multi-component self-assembly of traditional Chinese compound medicine decoction
13
作者 GUAN Qing‑xia ZHOU Xiao‑ying +4 位作者 LÜShao‑wa YANG Fang‑fang NIE Ze‑hui LIN Ze‑yu WANG Yan‑hong 《Journal of Hainan Medical University》 CAS 2023年第11期68-76,共9页
Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex compo... Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex components,including saponins,alkaloids,polysaccharides,flavonoids,amino acids and so on,which can be self-assembled to form gels,fibers,micelles,vesicles and so on.The self-assembled nano-phase not only neutralizes the single drug and reduces the toxicity and side effects,but also has its own pharmacological effects,which complement each other to achieve synergistic effect,so as to achieve the role of drug supplement,which is of research significance.The formation principle,solubilization and synergism principle and characterization method of multi-component self-assembly of traditional Chinese medicine compound decoction are discussed in this paper. 展开更多
关键词 Compound decoction of traditional Chinese medicine MULTI-COMPONENT self-assembly Formation principle Solubilization
下载PDF
Crystallization-driven Self-assembly of Isotactic Polystyrene in N,N-Dimethylformamide
14
作者 Qi-hua Zhou Zhi-yun Li +5 位作者 Hua-qing Liang Yong-jiang Long Qing Wu Hai-yang Gao Guo-dong Liang 祝方明 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第4期646-651,共6页
Herein we demonstrate crystallization-driven self-assembly ofisotactic polystyrene (iPS) with high isotacticity and narrow molecular weight distribution and crystallization-induced switching of the morphology of iPS... Herein we demonstrate crystallization-driven self-assembly ofisotactic polystyrene (iPS) with high isotacticity and narrow molecular weight distribution and crystallization-induced switching of the morphology of iPS aggregates in N, N-dimethylformamide (DMF). The formation and morphology switching of the self-assembled aggregates of iPS are investigated by means of dynamic light scattering (DLS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WXRD). The results reveal that cooling DMF solution of iPS promotes iPS chains to self-assemble into spherical aggregates with a gelled core cross-linked by microcrystals, which is surrounded by solvent-swollen corona. Furthermore, crystallization induces the deformation of iPS aggregates from spherical to plate-like or nest-like. 展开更多
关键词 Isotactic polystyrene N N-Dimethylformamide crystallization-driven self-assembly.
原文传递
Role of self-assembled molecules’anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells
15
作者 Xiaoyu Wang Muhammad Faizan +3 位作者 Kun Zhou Xinjiang Wang Yuhao Fu Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期108-115,共8页
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b... Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells. 展开更多
关键词 inverted perovskite solar cell defect passivation self-assembled molecule interface engineering first-principles calculation
下载PDF
Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
16
作者 毛党新 吴园燕 涂育松 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期605-612,共8页
The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate str... The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water. 展开更多
关键词 molecular dynamics simulation self-assembled monolayer resistance to protein adsorption hydrogen bond interfacial water
下载PDF
Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature
17
作者 Qingran Meng Wenwen Xu +2 位作者 Zuobing Xiao Qinfei Ke Xingran Kou 《Journal of Renewable Materials》 EI CAS 2024年第4期629-641,共13页
Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact... Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers. 展开更多
关键词 Epoxy-β-cyclodextrin SDS/DTAB self-assembly TEMPERATURE morphological evolution
下载PDF
Intelligent responsive self-assembled micro-nanocapsules:Used to delay gel gelation time
18
作者 Chuan-Hong Kang Ji-Xiang Guo +1 位作者 Dong-Tao Fei Wyclif Kiyingi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2433-2443,共11页
In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel ... In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels. 展开更多
关键词 Profile control and water shutoff Polymer gel Delayed gelation time Intelligent response self-assemblED Micro-nanocapsules
下载PDF
Self-assembly and UV-curing Property of Polymerized Lyotropic Liquid Crystal Monomer of Sodium 3,4,5-tris(ll-acryloxyundecyloxy)benzoate 被引量:1
19
作者 白玉勤 郭金宝 +1 位作者 王影 魏杰 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期95-101,I0004,共8页
A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by et... A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by etherification, acylation and finally neutralization. The chemi- cal structure was confirmed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance spectral analysis. The self-organization behavior of the monomer with deionized water in methanol at room temperature was also demonstrated. The assemblies were char- acterized by polarized optical microscope and X-ray diffraction. The results show that a solution containing 80:20 of the monomer to water was found to be able to self-organize into Lamellar (La) phase and 92:8 with inverted hexagonal (H]I) phase, which was in ac- cordance with the theoretical calculation of critical packing parameter. It suggests that the concentration of the monomer was the key factor to influence assembly structure. Addi- tionally, the acrylate conversion with different photoinitiators and nanostructure retention after polymerization were investigated. The research shows that the acrylate conversion of the monomer with Darocur2959 could reach up to 78% when irradiated by 30 mW/cm2 UV light of 365 nm for 30 min characterized by Real-time FT-IR as well as the sol-gel method. Meanwhile, the La and HII phase nanostructures were both retained after polymerization. 展开更多
关键词 Polymerized lyotropic liquid crystal self-assembly La phase HII phase UV-CURING
下载PDF
Tailoring the Self-assembly of Melamine on Au(111) via Doping with Cu Atoms
20
作者 石何霞 王文元 +2 位作者 李喆 王利 邵翔 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第4期443-449,I0002,共8页
The doping effect of Cu on the self-assembly film of melamine on an Au(111) surface has been investigated with scanning tunneling microscopy (STM). The evaporated Cu adatoms occupy the positions underneath the ami... The doping effect of Cu on the self-assembly film of melamine on an Au(111) surface has been investigated with scanning tunneling microscopy (STM). The evaporated Cu adatoms occupy the positions underneath the amino groups and change the hydrogen bonding pat- tern between the melamine molecules. Accordingly, the self-assembly structure has changed stepwise from a well-defined honeycomb into a track-like and then a triangular structure depending on the amount of Cu adatoms. The interaction between Cu adatom and melamine is moderate thus the Cu adatoms can be released upon mild heating to around 100 ℃. These findings are different from previous observations of either the coordination assembly or the physically trapped metal adatoms. 展开更多
关键词 MELAMINE self-assembly Scanning tunneling microscopy Cu adatoms Hydrogen bonding
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部