The paper deals with two-dimensional (2D) channel estimation of Orthogonal Frequency Division Multiplexing (OFDM) system ill slow fading wireless channel. We concentrate on two channel estimation schemes: Least S...The paper deals with two-dimensional (2D) channel estimation of Orthogonal Frequency Division Multiplexing (OFDM) system ill slow fading wireless channel. We concentrate on two channel estimation schemes: Least Square (LS)+Weighted BiLinear (WBL) and LS+Linear Minimum Mean-Squared Error (LMMSE) where the first method is proposed in this paper. After theory analysis and simulation in Typical Urban (TU) channel, we find that LS+LMMSE achieves the optimal perform- anee by exploiting prior knowledge of channel whereas LS+WBL, without requiring channel knowl- edge and with only half of the computational amount of LS+LMMSE, approaches LS+LMMSE in Bit Error Ratio (BER) performance when the distance of two adjoining pilot symbols along frequency direction is sufficiently small. This makes LS+WBL very suitable for wideband wireless applications.展开更多
Here we generalize the "BBH"-asymptotic analysis to a simplified mathematical model for tho planar ferromaguets and antiferromagnets. To develop such a static theory is a necessary step for a rigorous mathem...Here we generalize the "BBH"-asymptotic analysis to a simplified mathematical model for tho planar ferromaguets and antiferromagnets. To develop such a static theory is a necessary step for a rigorous mathematical justification of dynamical laws for the magnetic vortices formally derived in [1] and [2].展开更多
基金Supported by the National Natural Science Foundation of China (No: 60496311).
文摘The paper deals with two-dimensional (2D) channel estimation of Orthogonal Frequency Division Multiplexing (OFDM) system ill slow fading wireless channel. We concentrate on two channel estimation schemes: Least Square (LS)+Weighted BiLinear (WBL) and LS+Linear Minimum Mean-Squared Error (LMMSE) where the first method is proposed in this paper. After theory analysis and simulation in Typical Urban (TU) channel, we find that LS+LMMSE achieves the optimal perform- anee by exploiting prior knowledge of channel whereas LS+WBL, without requiring channel knowl- edge and with only half of the computational amount of LS+LMMSE, approaches LS+LMMSE in Bit Error Ratio (BER) performance when the distance of two adjoining pilot symbols along frequency direction is sufficiently small. This makes LS+WBL very suitable for wideband wireless applications.
基金Supported by the Dean's Dissertation FellowshipSupported by a NSF grant
文摘Here we generalize the "BBH"-asymptotic analysis to a simplified mathematical model for tho planar ferromaguets and antiferromagnets. To develop such a static theory is a necessary step for a rigorous mathematical justification of dynamical laws for the magnetic vortices formally derived in [1] and [2].