In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate init...In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method.展开更多
In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable...In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable spline element equations are derived, based on the mixed variational principle. The analysis and calculations of bending, vibration and stability of the plates on elastic foundation are presented in the paper. Because the field functions of plate on elastic foundation are assumed independently, the precision of the field variables of bending moments and displacement is high.展开更多
A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consis...A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.展开更多
Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions...Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.展开更多
Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (...Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.展开更多
A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite elem...A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation.展开更多
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh disto...The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B- net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian co- ordinates. In this paper, a thin plate spline element is devel- oped based on the spline element L8 and the refined tech- nique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.展开更多
In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponentia...In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponential B-spline Galerkin method in space together with Crank-Nicolson method in time. Three numerical examples related to propagation of sin- gle solitary wave, interaction of two solitary waves and wave generation are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.展开更多
Basic requirement for applying isoparametric element is that the element has to be convex and no violent distortion is allowed. In this paper, a cubic quadrilateral spline element with 12 nodes has been developed usin...Basic requirement for applying isoparametric element is that the element has to be convex and no violent distortion is allowed. In this paper, a cubic quadrilateral spline element with 12 nodes has been developed using the triangular area coordinates and the B-net method, which can exactly model the cubic field for quadrilateral element with both convex and concave shapes. Neither mapping nor coordinate transformation is required and the spline element can obtain high accuracy solutions and insensitive to mesh distortions.展开更多
Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the c...Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.展开更多
We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of ord...We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value problem. We obtain Septic B-Spline formulation and the Collocation B-spline method is formulated as an approximation solution. We apply the presented method to solve an example of seventh order boundary value problem in which the result shows that there is an agreement between approximate solutions and exact solutions. Resulting in low absolute errors shows that the presented numerical method is effective for solving high order boundary value problems. Finally, a general conclusion has been included.展开更多
We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The ac...We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.展开更多
文摘In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method.
文摘In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable spline element equations are derived, based on the mixed variational principle. The analysis and calculations of bending, vibration and stability of the plates on elastic foundation are presented in the paper. Because the field functions of plate on elastic foundation are assumed independently, the precision of the field variables of bending moments and displacement is high.
基金supported by the Fund of National Engineering and Research Center for Highways in Mountain Area(No.gsgzj-2012-05)the Fundamental Research Funds for the Central Universities of China(No.CDJXS12240003)the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201213)
文摘A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.
基金supported by the National Natural Science Foundation of China(11001037,11102037 and 11290143)the Fundamental Research Funds for the Central Universities
文摘Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.
基金financially supported by the National Natural Science Foundation of China(11202081,11272124,and 11472109)the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17)
文摘Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.
基金supported by the National Natural Science Foundation of China (Nos. 50805028 and 50875195)the Open Foundation of the State Key Laboratory of Structural Analysis for In-dustrial Equipment (No. GZ0815)
文摘A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation.
基金supported by the National Natural Science Foundation of China(11001037,11102037,11290143)the Fundamental Research Funds for the Central Universities(DUT13LK07)
文摘The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B- net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian co- ordinates. In this paper, a thin plate spline element is devel- oped based on the spline element L8 and the refined tech- nique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.
基金supported by the Scientific and Technological Research Council of Turkey(Grant No.113F394)
文摘In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponential B-spline Galerkin method in space together with Crank-Nicolson method in time. Three numerical examples related to propagation of sin- gle solitary wave, interaction of two solitary waves and wave generation are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
基金supported by the National Natural Science Foundation of China (11001037,11102037)the Fundamental Research Funds for the Central Universities(DUT13LK07)
文摘Basic requirement for applying isoparametric element is that the element has to be convex and no violent distortion is allowed. In this paper, a cubic quadrilateral spline element with 12 nodes has been developed using the triangular area coordinates and the B-net method, which can exactly model the cubic field for quadrilateral element with both convex and concave shapes. Neither mapping nor coordinate transformation is required and the spline element can obtain high accuracy solutions and insensitive to mesh distortions.
基金the financial support of the Important National Science and Technology Specific Projects of China (Grant No. 2011ZX05010-002)the Important Science and Technology Specific Projects of Petro China (Grant No. 2014E-3203)
文摘Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.
文摘We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value problem. We obtain Septic B-Spline formulation and the Collocation B-spline method is formulated as an approximation solution. We apply the presented method to solve an example of seventh order boundary value problem in which the result shows that there is an agreement between approximate solutions and exact solutions. Resulting in low absolute errors shows that the presented numerical method is effective for solving high order boundary value problems. Finally, a general conclusion has been included.
文摘We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.