期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A comparison of piecewise cubic Hermite interpolating polynomials,cubic splines and piecewise linear functions for the approximation of projectile aerodynamics 被引量:3
1
作者 C.A.Rabbath D.Corriveau 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期741-757,共17页
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr... Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile. 展开更多
关键词 Aerodynamic coefficients PIECEWISE POLYNOMIAL functionS cubic splines Curve fitting PIECEWISE linear functionS PIECEWISE cubic hermite interpolating POLYNOMIAL PROJECTILE modelling and simulation Fire control inputs Precision Ballistic computer software
下载PDF
On cubic Hermite coalescence hidden variable fractal interpolation functions 被引量:1
2
作者 Puthan Veedu Viswanathan Arya Kumar Bedabrata Chand 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2015年第1期55-76,共22页
Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermit... Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the short- coming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a gl-cubic Hermite in- terpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global G2-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an al- ternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41-53]. 展开更多
关键词 cubic hermite interpolant cubic spline fractal interpolation function COALESCENCE hidden vari-able convergence.
下载PDF
欧拉弯曲梁三次Hermite区间样条多小波有限元分析 被引量:1
3
作者 夏逸鸣 唐敢 江世永 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期313-318,共6页
基于小波多辨分析思想,选择三次Hermite区间样条函数作为多小波尺度基函数,用于构建梁单元多尺度位移近似空间;由最小势能原理,推导出欧拉弯曲梁有限元平衡方程.结果表明:该小波单元可通过改变多小波尺度函数的尺度来重新划分网格,从而... 基于小波多辨分析思想,选择三次Hermite区间样条函数作为多小波尺度基函数,用于构建梁单元多尺度位移近似空间;由最小势能原理,推导出欧拉弯曲梁有限元平衡方程.结果表明:该小波单元可通过改变多小波尺度函数的尺度来重新划分网格,从而可自由调节小波单元的计算精度;其计算精度与采用具有相同网格划分的任意多个传统欧拉弯曲梁单元求解的精度完全相同;该小波单元更加清晰地反映了小波有限元与传统有限元之间的关联. 展开更多
关键词 三次hermite区间样条函数 尺度函数 多小波 有限元
下载PDF
顶端作用垂直载荷力的大挠度弹塑性悬臂梁 被引量:1
4
作者 刘松涛 《苏州大学学报(自然科学版)》 CAS 1992年第1期101-104,共4页
本文建立了长方形截面非线性强化材料悬臂梁,在受到垂直作用力作用于自由端时,全梁的大挠度微分方程。并给出了一种计算方法。
关键词 大挠度 非线性强度 弹塑性 悬臂梁
下载PDF
基于非等间距灰色模型的捷联惯组误差系数建模预测 被引量:3
5
作者 张志警 刘洁瑜 马学文 《导弹与航天运载技术》 北大核心 2011年第5期40-42,共3页
捷联惯组历次测试数据由于受到各种因素的影响,数据量少,而且测试时间也是非等间隔的。针对这一特点,提出了捷联惯组误差系数非等间隔灰色建模预测新方法。通过3次样条函数插值,将不等间隔序列调整为等间隔序列;同时将基本预测模型中参... 捷联惯组历次测试数据由于受到各种因素的影响,数据量少,而且测试时间也是非等间隔的。针对这一特点,提出了捷联惯组误差系数非等间隔灰色建模预测新方法。通过3次样条函数插值,将不等间隔序列调整为等间隔序列;同时将基本预测模型中参数的构造方法加以改进,从而建立非等间隔时序灰色模型。实例分析证明该模型能够准确反映捷联惯组历次测试数据的变化规律,为解决捷联惯组历次测试数据小样本建模问题提供一种可行的途径。 展开更多
关键词 捷联惯组 灰色模型 3次样条函数插值 非等间隔 预测
下载PDF
Asaoka法在高速铁路沉降分析中的应用 被引量:3
6
作者 罗存喜 《土工基础》 2013年第2期79-82,共4页
Asaoka法是高速铁路沉降预测中最为常用的回归方法之一,但该法所需数据必须是等时间间隔的,实测数据的时间间距大多不能满足要求,需要通过相应的转换,但目前等时距处理方面的文献相对较少。为此,在某高铁无砟轨道路基实测资料的基础上,... Asaoka法是高速铁路沉降预测中最为常用的回归方法之一,但该法所需数据必须是等时间间隔的,实测数据的时间间距大多不能满足要求,需要通过相应的转换,但目前等时距处理方面的文献相对较少。为此,在某高铁无砟轨道路基实测资料的基础上,分别采用线性插值、样条插值、分段三次埃尔米特插值等方法,对观测数据进行了等时间间距处理,对比分析了不同处理方法对预测精度和预测结果的影响,可供解决类似的高铁无砟轨道沉降预测问题借鉴。 展开更多
关键词 ASAOKA法 沉降预测 等时间间隔 线性插值 样条插值 分段三次埃尔米特插值
下载PDF
路基沉降观测空间插值及其精度分析 被引量:1
7
作者 王丽 《阴山学刊(自然科学版)》 2018年第2期20-22,共3页
利用高铁某段路基沉降观测数据,对其进行空间插值,获取等时间间隔的沉降观测数据,为后续小波分析,数学建模分析奠定基础.通过三次样条函数插值方法和线性函数插值方法,分别获取时间间隔为1天的沉降观测数据.插值结果表明,线性插值方法... 利用高铁某段路基沉降观测数据,对其进行空间插值,获取等时间间隔的沉降观测数据,为后续小波分析,数学建模分析奠定基础.通过三次样条函数插值方法和线性函数插值方法,分别获取时间间隔为1天的沉降观测数据.插值结果表明,线性插值方法获取的插值曲线图比三次样条函数插值方法获取的插值曲线图平滑,获取数据奇异点较少,图形连续性好,插值精度较高.路基沉降观测数据,线性插值效果比三次样条函数插值效果好,选用线性插值获取的数据作为后续分析研究对象. 展开更多
关键词 三次样条函数插值 线性函数插值 等时间间隔
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部