This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finit...This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.展开更多
Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (...Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.展开更多
Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the c...Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.展开更多
This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are...This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.展开更多
A new method to the problem of fairing planar cubic B-spline curves is introduced in this paper. The method is based on weighted progressive iterative approximation (WPIA for short) and consists of following steps:...A new method to the problem of fairing planar cubic B-spline curves is introduced in this paper. The method is based on weighted progressive iterative approximation (WPIA for short) and consists of following steps: finding the bad point which needs to fair, deleting the bad point, re-inserting a new data point to keep the structm-e of the curve and applying WPIA method with the new set of the data points to obtain the faired curve. The new set of the data points is formed by the rest of the original data points and the new inserted point. The method can be used for shape design and data processing. Numerical examples are provided to demonstrate the effectiveness of the method.展开更多
A time integration algorithm for structural dynamic analysis is proposed by uniform cubic B-spline functions. The proposed algorithm is successfully used to solve the dynamic response of a single degree of freedom (S...A time integration algorithm for structural dynamic analysis is proposed by uniform cubic B-spline functions. The proposed algorithm is successfully used to solve the dynamic response of a single degree of freedom (SDOF) system, and then is generalized for a multiple-degree of freedom (MDOF) system. Stability analysis shows that, with an adjustable algorithmic parameter, the proposed method can achieve both conditional and unconditional stabilities. Validity of the method is shown with four numerical simulations. Comparison between the proposed method and other methods shows that the proposed method possesses high computation accuracy and desirable computation efficiency.展开更多
This research addresses the design of intensity-curvature functional(ICF)based digital high pass filter(HPF).ICF is calculated from bivariate cubic B-spline model polynomial function and is called ICF-based HPF.In ord...This research addresses the design of intensity-curvature functional(ICF)based digital high pass filter(HPF).ICF is calculated from bivariate cubic B-spline model polynomial function and is called ICF-based HPF.In order to calculate ICF,the model function needs to be second order differentiable and to have non-null classic-curvature calculated at the origin(0,0)of the pixel coordinate system.The theoretical basis of this research is called intensitycurvature concept.The concept envisions to replace signal intensity with the product between signal intensity and sum of second order partial derivatives of the model function.Extrapolation of the concept in two-dimensions(2D)makes it possible to calculate the ICF of an image.Theoretical treatise is presented to demonstrate the hypothesis that ICF is HPF signal.Empirical evidence then validates the assumption and also extends the comparison between ICF-based HPF and ten different HPFs among which is traditional HPF and particle swarm optimization(PSO)based HPF.Through comparison of image space and k-space magnitude,results indicate that HPFs behave differently.Traditional HPF filtering and ICF-based filtering are superior to PSO-based filtering.Images filtered with traditional HPF are sharper than images filtered with ICF-based filter.The contribution of this research can be summarized as follows:(1)Math description of the constraints that ICF need to obey to in order to function as HPF;(2)Math of ICF-based HPF of bivariate cubic B-spline;(3)Image space comparisons between HPFs;(4)K-space magnitude comparisons between HPFs.This research provides confirmation on the math procedure to use in order to design 2D HPF from a model bivariate polynomial function.展开更多
Curve interpolation with B-spline is widely used in various areas. This problem is classic and recently raised in application scenario with new requirements such as path planning following the tangential vector field ...Curve interpolation with B-spline is widely used in various areas. This problem is classic and recently raised in application scenario with new requirements such as path planning following the tangential vector field under certified error in CNC machining. This paper proposes an algorithm framework to solve Hausdorff distance certified cubic B-spline interpolation problem with or without tangential direction constraints. The algorithm has two stages: The first stage is to find the initial cubic B-spine fitting curve which satisfies the Hausdorff distance constraint;the second stage is to set up and solve the optimization models with certain constraints. Especially, the sufficient conditions of the global Hausdorff distance control for any error bound are discussed, which can be expressed as a series of linear and quadratic constraints. A simple numerical algorithm to compute the Hausdorff distance between a polyline and its B-spline interpolation curve is proposed to reduce our computation.Experimental results are presented to show the advantages of the proposed algorithms.展开更多
In traditional high-pressure–temperature assembly design, priority has been given to temperature insulation and retention at high pressures.This limits the efficiency of cooling of samples at the end of experiments, ...In traditional high-pressure–temperature assembly design, priority has been given to temperature insulation and retention at high pressures.This limits the efficiency of cooling of samples at the end of experiments, with a negative impact on many studies in high-pressure Earth andplanetary science. Inefficient cooling of experiments containing molten phases at high temperature leads to the formation of quench textures,which makes it impossible to quantify key compositional parameters of the original molten phase, such as their volatile contents. Here,we present a new low-cost experimental assembly for rapid cooling in a six-anvil cubic press. This assembly not only retains high heatingefficiency and thermal insulation, but also enables a very high cooling rate (∼600 ℃/s from 1900 ℃ to the glass transition temperature).Without using expensive materials or external modification of the press, the cooling rate in an assembly (∼600 ℃/s) with cube lengths of38.5 mm is about ten times faster than that in the traditional assembly (∼60 ℃/s). Experiments yielding inhomogeneous quenched melttextures when the traditional assembly is used are shown to yield homogeneous silicate glass without quench textures when the rapid coolingassembly is used.展开更多
Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large partic...Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large particle size(>20 nm)and less surface defects,however,hinder further application of ceria materials.Herein,an alternative strategy involving lactic acid(LA)assisted hydrothermal method was developed to synthesize active,selective and durable cubic ceria of<6 nm for dehydrogenation reactions.Detailed studies of growth mechanism revealed that,the carboxyl and hydroxyl groups in LA molecule synergistically manipulate the morphological evolution of ceria precursors.Carboxyl groups determine the cubic shape and particle size,while hydroxyl groups promote compositional transformation of ceria precursors into CeO_(2) phases.Moreover,enhanced oxygen vacancies(Vo)on the surface of CeO_(2) were obtained owing to continuous removal of O species under reductive atmosphere.Cubic CeO_(2) catalysts synthesized by the LA-assisted method,immobilized with bimetallic PtCo clusters,exhibit a record high activity(TOF:29,241 h^(-1))and Vo-dependent synergism for dehydrogenation of bio-derived polyols at 200℃.We also found that quenching Vo defects at air atmosphere causes activity loss of PtCo/CeO_(2) catalysts.To regenerate Vo defects,a simple strategy was developed by irradiating deactivated catalysts using hernia lamp.The outcome of this work will provide new insights into manufacturing durable catalyst materials for aqueous phase dehydrogenation applications.展开更多
Metastable nanostructured electrocatalyst with a completely different surface environment compared to conventional phase-based electrocatalyst often shows distinctive catalytic property.Although Ru-based electrocataly...Metastable nanostructured electrocatalyst with a completely different surface environment compared to conventional phase-based electrocatalyst often shows distinctive catalytic property.Although Ru-based electrocatalysts have been widely investigated toward hydrogen oxidation reaction(HOR)under alkaline electrolytes,these studies are mostly limited to conventional hexagonal-close-packed(hcp)phase,mainly arising from the lack of sufficient synthesis strategies.In this study,we report the precise synthesis of metastable binary RuW alloy with face-centered-cubic(fcc)phase.We find that the introduction of W can serve as fcc phase seeds and reduce the formation energy of metastable fcc-RuW alloy.Impressively,fcc-RuW exhibits remarkable alkaline HOR performance and stability with the activity of 0.67 mA cm_(Ru)^(-2)which is almost five and three times higher than that of hcp-Ru and commercial Pt/C,respectively,which is attributed to the optimized binding strength of adsorbed hydroxide intermediate derived from tailored electronic structure through W doping and phase engineering.Moreover,this strategy can also be applied to synthesize other metastable fcc-RuCr and fcc-RuMo alloys with enhanced HOR performances.展开更多
Cubic silicon carbide(3C-SiC)has superior mobility and thermal conduction over that of widely applied hexagonal 4H-SiC.Moreover,much lower concentration of interfacial traps between insulating oxide gate and 3C-SiC he...Cubic silicon carbide(3C-SiC)has superior mobility and thermal conduction over that of widely applied hexagonal 4H-SiC.Moreover,much lower concentration of interfacial traps between insulating oxide gate and 3C-SiC helps fabricate reliable and long-life devices like metal-oxidesemiconductor field effect transistors.However,the growth of high-quality and wafer-scale 3C-SiC crystals has remained a big challenge up to now despite decades-long efforts by researchers because of its easy transformation into other polytypes during growth,limiting the development of 3C-SiC-based devices.Herein,we report that 3C-SiC can be made thermodynamically favored from nucleation to growth on a 4H-SiC substrate by top-seeded solution growth technique,beyond what is expected by classical nucleation theory.This enables the steady growth of high-quality and large-size 3C-SiC crystals(2-4-inch in diameter and 4.0-10.0 mm in thickness)sustainable.The as-grown 3C-SiC crystals are free of other polytypes and have high-crystalline quality.Our findings broaden the mechanism of hetero-seed crystal growth and provide a feasible route to mass production of 3C-SiC crystals,offering new opportunities to develop power electronic devices potentially with better performances than those based on 4H-SiC.展开更多
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec...In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.展开更多
The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first ...The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.展开更多
In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples a...In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.展开更多
Using vectors between control points(a_i=P_(i+1)-P_i),parameters λ and μ(such that a_(i+1)=λ_(ai+μ_(a_i+2))are used to study the shape classification of planar parametric cubic B-spline curves. The regiosn of λμ...Using vectors between control points(a_i=P_(i+1)-P_i),parameters λ and μ(such that a_(i+1)=λ_(ai+μ_(a_i+2))are used to study the shape classification of planar parametric cubic B-spline curves. The regiosn of λμ space corresponding to different geometric features on the curves are investigated.These results are useful for curve design.展开更多
This paper studies the traditional local volatility model and proposes:A novel local volatility model with mean-reversion process.The larger is the gap between local volatility and its mean level,the higher will be th...This paper studies the traditional local volatility model and proposes:A novel local volatility model with mean-reversion process.The larger is the gap between local volatility and its mean level,the higher will be the rate at which local volatility will revert to the mean.Then,a B-spline method with proper knot control is applied to interpolate the local volatility matrix.The bi-cubic B-spline is used to recover the local volatility surface from this local volatility matrix.Finally,empirical tests show that the proposed mean-reversion local volatility model offers better prediction performance than the traditional local volatility model.展开更多
文摘This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.
基金financially supported by the National Natural Science Foundation of China(11202081,11272124,and 11472109)the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17)
文摘Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.
基金the financial support of the Important National Science and Technology Specific Projects of China (Grant No. 2011ZX05010-002)the Important Science and Technology Specific Projects of Petro China (Grant No. 2014E-3203)
文摘Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.
文摘This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.
基金Supported by National Natural Science Foundation of China(No.U1135003 and No.61100126)Ph.D.Programs Foundation of Ministry of Education of China for Young Scholars(No.20100111120023,No.20110111120026)Anhui Provincial Natural Science Foundation(No.11040606Q42)
文摘A new method to the problem of fairing planar cubic B-spline curves is introduced in this paper. The method is based on weighted progressive iterative approximation (WPIA for short) and consists of following steps: finding the bad point which needs to fair, deleting the bad point, re-inserting a new data point to keep the structm-e of the curve and applying WPIA method with the new set of the data points to obtain the faired curve. The new set of the data points is formed by the rest of the original data points and the new inserted point. The method can be used for shape design and data processing. Numerical examples are provided to demonstrate the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China(Nos.11602004 and11602081)the Fundamental Research Funds for the Central Universities(No.531107040934)
文摘A time integration algorithm for structural dynamic analysis is proposed by uniform cubic B-spline functions. The proposed algorithm is successfully used to solve the dynamic response of a single degree of freedom (SDOF) system, and then is generalized for a multiple-degree of freedom (MDOF) system. Stability analysis shows that, with an adjustable algorithmic parameter, the proposed method can achieve both conditional and unconditional stabilities. Validity of the method is shown with four numerical simulations. Comparison between the proposed method and other methods shows that the proposed method possesses high computation accuracy and desirable computation efficiency.
文摘This research addresses the design of intensity-curvature functional(ICF)based digital high pass filter(HPF).ICF is calculated from bivariate cubic B-spline model polynomial function and is called ICF-based HPF.In order to calculate ICF,the model function needs to be second order differentiable and to have non-null classic-curvature calculated at the origin(0,0)of the pixel coordinate system.The theoretical basis of this research is called intensitycurvature concept.The concept envisions to replace signal intensity with the product between signal intensity and sum of second order partial derivatives of the model function.Extrapolation of the concept in two-dimensions(2D)makes it possible to calculate the ICF of an image.Theoretical treatise is presented to demonstrate the hypothesis that ICF is HPF signal.Empirical evidence then validates the assumption and also extends the comparison between ICF-based HPF and ten different HPFs among which is traditional HPF and particle swarm optimization(PSO)based HPF.Through comparison of image space and k-space magnitude,results indicate that HPFs behave differently.Traditional HPF filtering and ICF-based filtering are superior to PSO-based filtering.Images filtered with traditional HPF are sharper than images filtered with ICF-based filter.The contribution of this research can be summarized as follows:(1)Math description of the constraints that ICF need to obey to in order to function as HPF;(2)Math of ICF-based HPF of bivariate cubic B-spline;(3)Image space comparisons between HPFs;(4)K-space magnitude comparisons between HPFs.This research provides confirmation on the math procedure to use in order to design 2D HPF from a model bivariate polynomial function.
基金partially supported by the National Key Research and Development Program of China under Grant No. 2020YFA0713703the National Science Foundation of China under Grant Nos. 11688101, 12371384+1 种基金12271516the Fundamental Research Funds for the Central Universities。
文摘Curve interpolation with B-spline is widely used in various areas. This problem is classic and recently raised in application scenario with new requirements such as path planning following the tangential vector field under certified error in CNC machining. This paper proposes an algorithm framework to solve Hausdorff distance certified cubic B-spline interpolation problem with or without tangential direction constraints. The algorithm has two stages: The first stage is to find the initial cubic B-spine fitting curve which satisfies the Hausdorff distance constraint;the second stage is to set up and solve the optimization models with certain constraints. Especially, the sufficient conditions of the global Hausdorff distance control for any error bound are discussed, which can be expressed as a series of linear and quadratic constraints. A simple numerical algorithm to compute the Hausdorff distance between a polyline and its B-spline interpolation curve is proposed to reduce our computation.Experimental results are presented to show the advantages of the proposed algorithms.
基金supported by National Natural Science Foundation of China Grant No.42250105 to Y.L.The Center for High Pressure Science and Technology Advanced Research is supported by the National Science Foundation of China(Grant Nos.U1530402 and U1930401).
文摘In traditional high-pressure–temperature assembly design, priority has been given to temperature insulation and retention at high pressures.This limits the efficiency of cooling of samples at the end of experiments, with a negative impact on many studies in high-pressure Earth andplanetary science. Inefficient cooling of experiments containing molten phases at high temperature leads to the formation of quench textures,which makes it impossible to quantify key compositional parameters of the original molten phase, such as their volatile contents. Here,we present a new low-cost experimental assembly for rapid cooling in a six-anvil cubic press. This assembly not only retains high heatingefficiency and thermal insulation, but also enables a very high cooling rate (∼600 ℃/s from 1900 ℃ to the glass transition temperature).Without using expensive materials or external modification of the press, the cooling rate in an assembly (∼600 ℃/s) with cube lengths of38.5 mm is about ten times faster than that in the traditional assembly (∼60 ℃/s). Experiments yielding inhomogeneous quenched melttextures when the traditional assembly is used are shown to yield homogeneous silicate glass without quench textures when the rapid coolingassembly is used.
基金financial supports National Natural Science Foundation of China(22078365,21706290)Natural Science Foundation of Shandong Province(ZR2017MB004)+2 种基金Innovative Research Funding from Qingdao City,Shandong Province(17-1-1-80-jch)“Fundamental Research Funds for the Central Universities”and“the Development Fund of State Key Laboratory of Heavy Oil Processing”(17CX02017A,20CX02204A)Postgraduate Innovation Project(YCX2021057)from China University of Petroleum.
文摘Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large particle size(>20 nm)and less surface defects,however,hinder further application of ceria materials.Herein,an alternative strategy involving lactic acid(LA)assisted hydrothermal method was developed to synthesize active,selective and durable cubic ceria of<6 nm for dehydrogenation reactions.Detailed studies of growth mechanism revealed that,the carboxyl and hydroxyl groups in LA molecule synergistically manipulate the morphological evolution of ceria precursors.Carboxyl groups determine the cubic shape and particle size,while hydroxyl groups promote compositional transformation of ceria precursors into CeO_(2) phases.Moreover,enhanced oxygen vacancies(Vo)on the surface of CeO_(2) were obtained owing to continuous removal of O species under reductive atmosphere.Cubic CeO_(2) catalysts synthesized by the LA-assisted method,immobilized with bimetallic PtCo clusters,exhibit a record high activity(TOF:29,241 h^(-1))and Vo-dependent synergism for dehydrogenation of bio-derived polyols at 200℃.We also found that quenching Vo defects at air atmosphere causes activity loss of PtCo/CeO_(2) catalysts.To regenerate Vo defects,a simple strategy was developed by irradiating deactivated catalysts using hernia lamp.The outcome of this work will provide new insights into manufacturing durable catalyst materials for aqueous phase dehydrogenation applications.
基金the support from the National Natural Science Foundation of China(22272121,21972107)the National Key Research and Development program of China(2021YFB4001200)。
文摘Metastable nanostructured electrocatalyst with a completely different surface environment compared to conventional phase-based electrocatalyst often shows distinctive catalytic property.Although Ru-based electrocatalysts have been widely investigated toward hydrogen oxidation reaction(HOR)under alkaline electrolytes,these studies are mostly limited to conventional hexagonal-close-packed(hcp)phase,mainly arising from the lack of sufficient synthesis strategies.In this study,we report the precise synthesis of metastable binary RuW alloy with face-centered-cubic(fcc)phase.We find that the introduction of W can serve as fcc phase seeds and reduce the formation energy of metastable fcc-RuW alloy.Impressively,fcc-RuW exhibits remarkable alkaline HOR performance and stability with the activity of 0.67 mA cm_(Ru)^(-2)which is almost five and three times higher than that of hcp-Ru and commercial Pt/C,respectively,which is attributed to the optimized binding strength of adsorbed hydroxide intermediate derived from tailored electronic structure through W doping and phase engineering.Moreover,this strategy can also be applied to synthesize other metastable fcc-RuCr and fcc-RuMo alloys with enhanced HOR performances.
基金supported by the Beijing Municipal Science and Technology Project(Grant No.Z211100004821004)the Special Project on Transfer and Conversion of Scientific and Technological Achievements of the Chinese Academy of Sciences(Grant No.KFJ-HGZX-042)
文摘Cubic silicon carbide(3C-SiC)has superior mobility and thermal conduction over that of widely applied hexagonal 4H-SiC.Moreover,much lower concentration of interfacial traps between insulating oxide gate and 3C-SiC helps fabricate reliable and long-life devices like metal-oxidesemiconductor field effect transistors.However,the growth of high-quality and wafer-scale 3C-SiC crystals has remained a big challenge up to now despite decades-long efforts by researchers because of its easy transformation into other polytypes during growth,limiting the development of 3C-SiC-based devices.Herein,we report that 3C-SiC can be made thermodynamically favored from nucleation to growth on a 4H-SiC substrate by top-seeded solution growth technique,beyond what is expected by classical nucleation theory.This enables the steady growth of high-quality and large-size 3C-SiC crystals(2-4-inch in diameter and 4.0-10.0 mm in thickness)sustainable.The as-grown 3C-SiC crystals are free of other polytypes and have high-crystalline quality.Our findings broaden the mechanism of hetero-seed crystal growth and provide a feasible route to mass production of 3C-SiC crystals,offering new opportunities to develop power electronic devices potentially with better performances than those based on 4H-SiC.
基金This work was supported by China Railway Corporation Science and Technology Research and Development Project(P2021J038).
文摘In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.
文摘The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.
文摘In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.
文摘Using vectors between control points(a_i=P_(i+1)-P_i),parameters λ and μ(such that a_(i+1)=λ_(ai+μ_(a_i+2))are used to study the shape classification of planar parametric cubic B-spline curves. The regiosn of λμ space corresponding to different geometric features on the curves are investigated.These results are useful for curve design.
文摘This paper studies the traditional local volatility model and proposes:A novel local volatility model with mean-reversion process.The larger is the gap between local volatility and its mean level,the higher will be the rate at which local volatility will revert to the mean.Then,a B-spline method with proper knot control is applied to interpolate the local volatility matrix.The bi-cubic B-spline is used to recover the local volatility surface from this local volatility matrix.Finally,empirical tests show that the proposed mean-reversion local volatility model offers better prediction performance than the traditional local volatility model.