In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained...In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained. Fhrthermore, the integrable coupling systems of the (2+2)-dimensional cubic Volterra lattice hierarchy and the generalized Toda lattice soliton equations are presented by using a Lie algebraic system sl(4).展开更多
It is shown that the Kronecker product can be applied to constructing new discrete integrable couplingsystem of soliton equation hierarchy in this paper.A direct application to the fractional cubic Volterra lattice sp...It is shown that the Kronecker product can be applied to constructing new discrete integrable couplingsystem of soliton equation hierarchy in this paper.A direct application to the fractional cubic Volterra lattice spectralproblem leads to a novel integrable coupling system of soliton equation hierarchy.It is also indicated that the study ofdiscrete integrable couplings by using the Kronecker product is an efficient and straightforward method.This methodcan be used generally.展开更多
In this paper, the effect of of flank wear polycrystalline cubic boron nitride (PCBN) tools on residual stresses, white layer and roughness of machined workpiece surfaces is studied. Experimental results indicate th...In this paper, the effect of of flank wear polycrystalline cubic boron nitride (PCBN) tools on residual stresses, white layer and roughness of machined workpiece surfaces is studied. Experimental results indicate that with the increase of the tool wear, the surface of the machined workpiece tends to generate tensile residual stresses, and white layer becomes clearly thicker and uneven on the workpiece surface. The effect of the flank wear on the surface roughness is less within some range of flank wear value. The results show that it is possible to produce ideal surface integrality levels by controlling the tool flank wear.展开更多
Let 0<γ<π be a fixed pythagorean angle. We study the abelian group Hr of primitive integral triangles (a,b,c) for which the angle opposite side c is γ. Addition in Hr is defined by adding the angles β opposi...Let 0<γ<π be a fixed pythagorean angle. We study the abelian group Hr of primitive integral triangles (a,b,c) for which the angle opposite side c is γ. Addition in Hr is defined by adding the angles β opposite side b and modding out by π-γ. The only Hr for which the structure is known is Hπ/2, which is free abelian. We prove that for generalγ, Hr has an element of order two iff 2(1- cosγ) is a rational square, and it has elements of order three iff the cubic (2cosγ)x3-3x2+1=0 has a rational solution 0<x<1. This shows that the set of values ofγ for which Hr has two-torsion is dense in [0, π], and similarly for three-torsion. We also show that there is at most one copy of either Z2 or Z3 in Hr. Finally, we give some examples of higher order torsion elements in Hr.展开更多
We present a variety of superintegrable systems in polar coordinates possessing a cubic and a quadratic integral of motion, where Noether integrals of kinetic energy are used to build the integrals. In addition, the a...We present a variety of superintegrable systems in polar coordinates possessing a cubic and a quadratic integral of motion, where Noether integrals of kinetic energy are used to build the integrals. In addition, the associated polynomial Poisson algebras with their algebraic dependence relations are exhibited.展开更多
Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are partic...Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are particularly effective for the perturbed integrable non-Hamiltonian system.The study reveals that the system has 3 limit cycles.By the method of numerical simulation,the distributed orderliness of the 3 limitcycles is observed,and their nicety places are determined.The study also indicates that each of the 3 limit cycles passes the corresponding nicety point.展开更多
针对现有渠道土方计算方法的不足,基于M ATLAB强大的数学计算功能和简单的语言特点,提出用三次样条函数拟和渠道挖填断面的面积函数,再运用R om berg积分法计算渠道土方量的新方法。算例结果表明,该方法计算结果误差小、精度高、算法简...针对现有渠道土方计算方法的不足,基于M ATLAB强大的数学计算功能和简单的语言特点,提出用三次样条函数拟和渠道挖填断面的面积函数,再运用R om berg积分法计算渠道土方量的新方法。算例结果表明,该方法计算结果误差小、精度高、算法简单,可供设计人员参考。展开更多
首先利用环代数A^1和微分算子构建一种新的代数系统X。其次,利用这种代数系统提出了一个新的等谱问题,由离散的零曲率方程得到Lax可积的立方V o lterra格方程族。最后,通过扩展代数系统X得出了立方V o lterra格方程族的可积耦合体系。...首先利用环代数A^1和微分算子构建一种新的代数系统X。其次,利用这种代数系统提出了一个新的等谱问题,由离散的零曲率方程得到Lax可积的立方V o lterra格方程族。最后,通过扩展代数系统X得出了立方V o lterra格方程族的可积耦合体系。这种方法也能被应用到其它的格方程族中。展开更多
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
基金Supported by the Research Work of Liaoning Provincial Development of Education under Grant No. 2008670
文摘In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained. Fhrthermore, the integrable coupling systems of the (2+2)-dimensional cubic Volterra lattice hierarchy and the generalized Toda lattice soliton equations are presented by using a Lie algebraic system sl(4).
基金the State Key Basic Research and Development Program of China under Grant No.2004CB318000
文摘It is shown that the Kronecker product can be applied to constructing new discrete integrable couplingsystem of soliton equation hierarchy in this paper.A direct application to the fractional cubic Volterra lattice spectralproblem leads to a novel integrable coupling system of soliton equation hierarchy.It is also indicated that the study ofdiscrete integrable couplings by using the Kronecker product is an efficient and straightforward method.This methodcan be used generally.
基金Supported by the National Natural Science Foundation of China(No.50875068),and the National High Technology Research and Development Programme of China(No.2009AA044302).
文摘In this paper, the effect of of flank wear polycrystalline cubic boron nitride (PCBN) tools on residual stresses, white layer and roughness of machined workpiece surfaces is studied. Experimental results indicate that with the increase of the tool wear, the surface of the machined workpiece tends to generate tensile residual stresses, and white layer becomes clearly thicker and uneven on the workpiece surface. The effect of the flank wear on the surface roughness is less within some range of flank wear value. The results show that it is possible to produce ideal surface integrality levels by controlling the tool flank wear.
文摘Let 0<γ<π be a fixed pythagorean angle. We study the abelian group Hr of primitive integral triangles (a,b,c) for which the angle opposite side c is γ. Addition in Hr is defined by adding the angles β opposite side b and modding out by π-γ. The only Hr for which the structure is known is Hπ/2, which is free abelian. We prove that for generalγ, Hr has an element of order two iff 2(1- cosγ) is a rational square, and it has elements of order three iff the cubic (2cosγ)x3-3x2+1=0 has a rational solution 0<x<1. This shows that the set of values ofγ for which Hr has two-torsion is dense in [0, π], and similarly for three-torsion. We also show that there is at most one copy of either Z2 or Z3 in Hr. Finally, we give some examples of higher order torsion elements in Hr.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11771352 and 11371293
文摘We present a variety of superintegrable systems in polar coordinates possessing a cubic and a quadratic integral of motion, where Noether integrals of kinetic energy are used to build the integrals. In addition, the associated polynomial Poisson algebras with their algebraic dependence relations are exhibited.
基金supported by the Natural Science Foundation of China(Grant No.11161038)
文摘Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are particularly effective for the perturbed integrable non-Hamiltonian system.The study reveals that the system has 3 limit cycles.By the method of numerical simulation,the distributed orderliness of the 3 limitcycles is observed,and their nicety places are determined.The study also indicates that each of the 3 limit cycles passes the corresponding nicety point.