In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-s...In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.展开更多
This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we...This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximum error,root mean square error(RMSE)and coefficient of determination(R^(2)).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.展开更多
This manuscript’s aim is to form and examine the numerical simulation of Caputo-time fractional nonlinear Burgers’equation via collocation approach with trigonometric tension B-splines as base functions.First,L 1 di...This manuscript’s aim is to form and examine the numerical simulation of Caputo-time fractional nonlinear Burgers’equation via collocation approach with trigonometric tension B-splines as base functions.First,L 1 discretization formula is utilized for the time fractional derivative and after linearizing the nonlinear term,the trigonometric tension B-spline interpolants are utilized to get a system of simultaneous linear equations that are solved via Gauss elimination method.Thus,numerical approximation at the desired time level is obtained.It is demonstrated via von-Neumann approach that proposed scheme produces stable solutions.The results of six different test examples having their analytical solutions are compared with the results in the literature to validate the accuracy and efficiency of the scheme.展开更多
Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (...Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.展开更多
This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finit...This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.展开更多
Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the c...Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.展开更多
This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are...This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.展开更多
Curve interpolation with B-spline is widely used in various areas. This problem is classic and recently raised in application scenario with new requirements such as path planning following the tangential vector field ...Curve interpolation with B-spline is widely used in various areas. This problem is classic and recently raised in application scenario with new requirements such as path planning following the tangential vector field under certified error in CNC machining. This paper proposes an algorithm framework to solve Hausdorff distance certified cubic B-spline interpolation problem with or without tangential direction constraints. The algorithm has two stages: The first stage is to find the initial cubic B-spine fitting curve which satisfies the Hausdorff distance constraint;the second stage is to set up and solve the optimization models with certain constraints. Especially, the sufficient conditions of the global Hausdorff distance control for any error bound are discussed, which can be expressed as a series of linear and quadratic constraints. A simple numerical algorithm to compute the Hausdorff distance between a polyline and its B-spline interpolation curve is proposed to reduce our computation.Experimental results are presented to show the advantages of the proposed algorithms.展开更多
This paper presents a new kind of uniform spline curve, named trigonometric polynomial B-splines, over space Ω = span{sini,cost, tk-3,tk-4, …,t, 1} of which k is an arbitrary integer larger than or equal to 3. We sh...This paper presents a new kind of uniform spline curve, named trigonometric polynomial B-splines, over space Ω = span{sini,cost, tk-3,tk-4, …,t, 1} of which k is an arbitrary integer larger than or equal to 3. We show that trigonometric polynomial B-spline curves have many similar properties to traditional B-splines. Based on the explicit representation of the curve we have also presented the subdivision formulae for this new kind of curve. Since the new spline can include both polynomial curves and trigonometric curves as special cases without rational form, it can be used as an efficient new model for geometric design in the fields of CAD/CAM.展开更多
Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a...Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.展开更多
文摘In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.
基金This research was fully supported by Universiti Teknologi PETRONAS(UTP)and Ministry of Education,Malaysia through research grant FRGS/1/2018/STG06/UTP/03/1/015 MA0-020(New rational quartic spline interpolation for image refinement)and UTP through a research grant YUTP:0153AA-H24(Spline Triangulation for Spatial Interpolation of Geophysical Data).
文摘This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximum error,root mean square error(RMSE)and coefficient of determination(R^(2)).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.
文摘This manuscript’s aim is to form and examine the numerical simulation of Caputo-time fractional nonlinear Burgers’equation via collocation approach with trigonometric tension B-splines as base functions.First,L 1 discretization formula is utilized for the time fractional derivative and after linearizing the nonlinear term,the trigonometric tension B-spline interpolants are utilized to get a system of simultaneous linear equations that are solved via Gauss elimination method.Thus,numerical approximation at the desired time level is obtained.It is demonstrated via von-Neumann approach that proposed scheme produces stable solutions.The results of six different test examples having their analytical solutions are compared with the results in the literature to validate the accuracy and efficiency of the scheme.
基金financially supported by the National Natural Science Foundation of China(11202081,11272124,and 11472109)the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17)
文摘Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.
文摘This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.
基金the financial support of the Important National Science and Technology Specific Projects of China (Grant No. 2011ZX05010-002)the Important Science and Technology Specific Projects of Petro China (Grant No. 2014E-3203)
文摘Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.
文摘This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.
基金partially supported by the National Key Research and Development Program of China under Grant No. 2020YFA0713703the National Science Foundation of China under Grant Nos. 11688101, 12371384+1 种基金12271516the Fundamental Research Funds for the Central Universities。
文摘Curve interpolation with B-spline is widely used in various areas. This problem is classic and recently raised in application scenario with new requirements such as path planning following the tangential vector field under certified error in CNC machining. This paper proposes an algorithm framework to solve Hausdorff distance certified cubic B-spline interpolation problem with or without tangential direction constraints. The algorithm has two stages: The first stage is to find the initial cubic B-spine fitting curve which satisfies the Hausdorff distance constraint;the second stage is to set up and solve the optimization models with certain constraints. Especially, the sufficient conditions of the global Hausdorff distance control for any error bound are discussed, which can be expressed as a series of linear and quadratic constraints. A simple numerical algorithm to compute the Hausdorff distance between a polyline and its B-spline interpolation curve is proposed to reduce our computation.Experimental results are presented to show the advantages of the proposed algorithms.
基金This work was partially supported by the National Natural Science Foundation of China (Grant No. 19971079) and Foundation of State Key Basic Research 973 Development Programming Item (Grant No. G1998030600).
文摘This paper presents a new kind of uniform spline curve, named trigonometric polynomial B-splines, over space Ω = span{sini,cost, tk-3,tk-4, …,t, 1} of which k is an arbitrary integer larger than or equal to 3. We show that trigonometric polynomial B-spline curves have many similar properties to traditional B-splines. Based on the explicit representation of the curve we have also presented the subdivision formulae for this new kind of curve. Since the new spline can include both polynomial curves and trigonometric curves as special cases without rational form, it can be used as an efficient new model for geometric design in the fields of CAD/CAM.
文摘Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.