The adsorption and diffusion of hydrogen atoms on Cu(001)are studied using first-principles calculations.By taking into account the contribution of zero-point energy(ZPE),the originally identical barriers are shown to...The adsorption and diffusion of hydrogen atoms on Cu(001)are studied using first-principles calculations.By taking into account the contribution of zero-point energy(ZPE),the originally identical barriers are shown to be different for H and D,which are respectively calculated to be~158 me V and~139 me V in height.Using the transfer matrix method(TMM),we are able to calculate the accurate probability of transmission across the barriers.The crucial role of quantum tunneling is clearly demonstrated at low-temperature region.By introducing a temperature-dependent attempting frequency prefactor,the rate constants and diffusion coefficients are calculated.The results are in agreement with the experimental measurements at temperatures from~50 K to 80 K.展开更多
The activation and dissociation of hydrogen molecules(H_(2))on the Cu(001)surface are studied theoretically.Using first-principles calculations,the activation barrier for the dissociation of H_(2) on Cu(001)is determi...The activation and dissociation of hydrogen molecules(H_(2))on the Cu(001)surface are studied theoretically.Using first-principles calculations,the activation barrier for the dissociation of H_(2) on Cu(001)is determined to be~0.59 eV in height.It is found that the electron transfer from the copper substrate to H_(2) plays a key role in the activation and breaking of the H–H bond,and the formation of the Cu–H bonds.Two stationary states are identified at around the critical height of bond breaking,corresponding to the molecular and the dissociative states,respectively.Using the transfer matrix method,we also investigate the role of quantum tunneling in the dissociation process along the minimum energy pathway(MEP),which is found to be significant at or below room temperature.At a given temperature,the tunneling contributions due to the translational and the vibrational motions of H_(2) are quantified for the dissociation process.Within a wide range of temperature,the effects of quantum tunneling on the effective barriers of dissociation and the rate constants are observed.The deduced energetic parameters associated with the thermal equilibrium and non-equilibrium(molecular beam)conditions are comparable to experimental data.In the low-temperature region,the crossover from classical to quantum regime is identified.展开更多
基金This work was financially supported by the National Key R&D Program of China(No.2017YFA0205004)the Anhui Initiative in Quantum Information Technologies(AHY090000)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36020200)the National Natural Science Foundation of China(No.11620101003,No.11904349,and No.21972129).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474285 and 12074382)。
文摘The adsorption and diffusion of hydrogen atoms on Cu(001)are studied using first-principles calculations.By taking into account the contribution of zero-point energy(ZPE),the originally identical barriers are shown to be different for H and D,which are respectively calculated to be~158 me V and~139 me V in height.Using the transfer matrix method(TMM),we are able to calculate the accurate probability of transmission across the barriers.The crucial role of quantum tunneling is clearly demonstrated at low-temperature region.By introducing a temperature-dependent attempting frequency prefactor,the rate constants and diffusion coefficients are calculated.The results are in agreement with the experimental measurements at temperatures from~50 K to 80 K.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474285 and 12074382)。
文摘The activation and dissociation of hydrogen molecules(H_(2))on the Cu(001)surface are studied theoretically.Using first-principles calculations,the activation barrier for the dissociation of H_(2) on Cu(001)is determined to be~0.59 eV in height.It is found that the electron transfer from the copper substrate to H_(2) plays a key role in the activation and breaking of the H–H bond,and the formation of the Cu–H bonds.Two stationary states are identified at around the critical height of bond breaking,corresponding to the molecular and the dissociative states,respectively.Using the transfer matrix method,we also investigate the role of quantum tunneling in the dissociation process along the minimum energy pathway(MEP),which is found to be significant at or below room temperature.At a given temperature,the tunneling contributions due to the translational and the vibrational motions of H_(2) are quantified for the dissociation process.Within a wide range of temperature,the effects of quantum tunneling on the effective barriers of dissociation and the rate constants are observed.The deduced energetic parameters associated with the thermal equilibrium and non-equilibrium(molecular beam)conditions are comparable to experimental data.In the low-temperature region,the crossover from classical to quantum regime is identified.