Thispaper has investigated the coordination and supramolecular assemblies of alkali metal ions,cucurbit[5]uril(Q[5]),and[CdCl_(4)]^(2-)to confirm whether[CdCl_(4)]^(2-)can produce the“honeycomb effect”,induce coordi...Thispaper has investigated the coordination and supramolecular assemblies of alkali metal ions,cucurbit[5]uril(Q[5]),and[CdCl_(4)]^(2-)to confirm whether[CdCl_(4)]^(2-)can produce the“honeycomb effect”,induce coordination of alkali metal ions to Q[5],and form linear coordination polymers.In this work,the effect of alkali metal ions on the construction of Q[5]-Cd^(2+)ion system under acidic conditions was investigated.Five complexes were successfully obtained by solvent evaporation method.Among the five crystal structures obtained,it can be observed that the presence of[CdCl_(4)]^(2-)did not result in the complexation of alkali metal ions by the Q[5]molecule.Instead,a bowl-like Cd^(2+)@Q[5]complex was formed.Indeed,[CdCl_(4)]^(2-)did not produce the honeycomb effect but led to the formation of Q[5]-based honeycomb frameworks with hexagonal cellsoccupied by[CdCl_(4)]^(2-).The experimental results show that cadmium ion showed stronger ability to coordinate to Q[5]in HCl solution.展开更多
In order to reduce the impact of CdS photogenerated electron-hole recombination on its photocatalytic performance,a narrow band gap semiconductor MoS_(2) and organic macromolecular cucurbit[n]urils(Q[n])were used to m...In order to reduce the impact of CdS photogenerated electron-hole recombination on its photocatalytic performance,a narrow band gap semiconductor MoS_(2) and organic macromolecular cucurbit[n]urils(Q[n])were used to modify CdS.Q[n]/CdS-MoS_(2)(n=6,7,8)composite photocatalysts were synthesized by hydrothermal method.Infrared spectroscopy,X-ray diffraction,X-ray photoelectron spectroscopy,field emission scanning electron microscopy,ultraviolet-visible and photoluminescence spectrum were used to characterize the structure,morphology and optical properties of the products,and the catalytic degradation of the solutions of methylene blue,rhodamine B and crystal violet by Q[n]/CdS-MoS_(2) composite catalyst was investigated.The results showed that the Q[n]played a regulatory role on the growth and crystallization of CdS-MoS_(2) particles,Q[n]/CdS-MoS_(2)(n=6,7,8)formed flower clusters with petal-like leaves,the flower clusters of petal-like leaves increased the surface area and active sites of the catalyst,the Q[n]/CdS-MoS_(2) barrier width decreased,the electron-hole pair separation efficiency was improved in the Q[6]/Cds-MoS_(2).Q[n]makes the electron-hole pair to obtain better separation and migration.The Q[6]/CdS-MoS_(2) and Q[7]/CdS-MoS2 have good photocatalytic activity for methylene blue,and the catalytic process is based on hydroxyl radical principle.展开更多
A new cucurbit[6]uril bridsed binuclear complex {[Gd(H2O)6]2[Q6(H2O)]}C16·4H2O, where Q6 represents cucurbit[6]uril, has been synthesized and characterized by X-ray diffraction. The crystal structure shows th...A new cucurbit[6]uril bridsed binuclear complex {[Gd(H2O)6]2[Q6(H2O)]}C16·4H2O, where Q6 represents cucurbit[6]uril, has been synthesized and characterized by X-ray diffraction. The crystal structure shows that the complex has an extended cucurbit[6]uril-bridged structure consisting of two gadolinium(Ⅲ) ions, in which each gadolinium(Ⅲ) ion is coordinated with two neighboring carbonylic oxygen atoms of Q6 and six oxygen atoms of water molecules that leans toward one side of the portal. One disordered guest water molecule resides in the Q6 molecule cavity and occupies two different positions. Hydrogen bonds assemble the complcx to threedimensional supramolecular structure.展开更多
New fabrication method of nanostructures is of great importance for the applications of nanoscience and nanotechnology.This review summarizes cucurbit[n]uril(CB[n])-based nanostructure fabrication and modification app...New fabrication method of nanostructures is of great importance for the applications of nanoscience and nanotechnology.This review summarizes cucurbit[n]uril(CB[n])-based nanostructure fabrication and modification approaches.These strategies include the use of CB[n]s as building blocks and supramolecular crosslinkers to fabricate nanostructures,to surface modify nanostructures,and as gatekeepers to control the release of encapsulated cargo.These nanostructures are used for drug delivery,bioimaging,chemical sensing,catalysis and other applications.CB[n]s often play a vital role in the fabrication of these nanos-tructures,and the realization of the applications.展开更多
文摘Thispaper has investigated the coordination and supramolecular assemblies of alkali metal ions,cucurbit[5]uril(Q[5]),and[CdCl_(4)]^(2-)to confirm whether[CdCl_(4)]^(2-)can produce the“honeycomb effect”,induce coordination of alkali metal ions to Q[5],and form linear coordination polymers.In this work,the effect of alkali metal ions on the construction of Q[5]-Cd^(2+)ion system under acidic conditions was investigated.Five complexes were successfully obtained by solvent evaporation method.Among the five crystal structures obtained,it can be observed that the presence of[CdCl_(4)]^(2-)did not result in the complexation of alkali metal ions by the Q[5]molecule.Instead,a bowl-like Cd^(2+)@Q[5]complex was formed.Indeed,[CdCl_(4)]^(2-)did not produce the honeycomb effect but led to the formation of Q[5]-based honeycomb frameworks with hexagonal cellsoccupied by[CdCl_(4)]^(2-).The experimental results show that cadmium ion showed stronger ability to coordinate to Q[5]in HCl solution.
基金This work was supported by the National Natural Science Foundation of China(No.21871064)the National College Students’Innovative Training Program of China(No.2020053)+1 种基金the“Undergraduate Teaching Project”of Guizhou University(No.201936)the Student Research Training Foundation of Guizhou University,China(No.(2019)106).
文摘In order to reduce the impact of CdS photogenerated electron-hole recombination on its photocatalytic performance,a narrow band gap semiconductor MoS_(2) and organic macromolecular cucurbit[n]urils(Q[n])were used to modify CdS.Q[n]/CdS-MoS_(2)(n=6,7,8)composite photocatalysts were synthesized by hydrothermal method.Infrared spectroscopy,X-ray diffraction,X-ray photoelectron spectroscopy,field emission scanning electron microscopy,ultraviolet-visible and photoluminescence spectrum were used to characterize the structure,morphology and optical properties of the products,and the catalytic degradation of the solutions of methylene blue,rhodamine B and crystal violet by Q[n]/CdS-MoS_(2) composite catalyst was investigated.The results showed that the Q[n]played a regulatory role on the growth and crystallization of CdS-MoS_(2) particles,Q[n]/CdS-MoS_(2)(n=6,7,8)formed flower clusters with petal-like leaves,the flower clusters of petal-like leaves increased the surface area and active sites of the catalyst,the Q[n]/CdS-MoS_(2) barrier width decreased,the electron-hole pair separation efficiency was improved in the Q[6]/Cds-MoS_(2).Q[n]makes the electron-hole pair to obtain better separation and migration.The Q[6]/CdS-MoS_(2) and Q[7]/CdS-MoS2 have good photocatalytic activity for methylene blue,and the catalytic process is based on hydroxyl radical principle.
基金supported by the National Natural Science Foundation of China(No.20471056)
文摘A new cucurbit[6]uril bridsed binuclear complex {[Gd(H2O)6]2[Q6(H2O)]}C16·4H2O, where Q6 represents cucurbit[6]uril, has been synthesized and characterized by X-ray diffraction. The crystal structure shows that the complex has an extended cucurbit[6]uril-bridged structure consisting of two gadolinium(Ⅲ) ions, in which each gadolinium(Ⅲ) ion is coordinated with two neighboring carbonylic oxygen atoms of Q6 and six oxygen atoms of water molecules that leans toward one side of the portal. One disordered guest water molecule resides in the Q6 molecule cavity and occupies two different positions. Hydrogen bonds assemble the complcx to threedimensional supramolecular structure.
基金National Natural Science Foundation of China(No.21921003)for financial support.
文摘New fabrication method of nanostructures is of great importance for the applications of nanoscience and nanotechnology.This review summarizes cucurbit[n]uril(CB[n])-based nanostructure fabrication and modification approaches.These strategies include the use of CB[n]s as building blocks and supramolecular crosslinkers to fabricate nanostructures,to surface modify nanostructures,and as gatekeepers to control the release of encapsulated cargo.These nanostructures are used for drug delivery,bioimaging,chemical sensing,catalysis and other applications.CB[n]s often play a vital role in the fabrication of these nanos-tructures,and the realization of the applications.