期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Visual Relationship Detection with Contextual Information 被引量:1
1
作者 Yugang Li Yongbin Wang +1 位作者 Zhe Chen Yuting Zhu 《Computers, Materials & Continua》 SCIE EI 2020年第6期1575-1589,共15页
Understanding an image goes beyond recognizing and locating the objects in it,the relationships between objects also very important in image understanding.Most previous methods have focused on recognizing local predic... Understanding an image goes beyond recognizing and locating the objects in it,the relationships between objects also very important in image understanding.Most previous methods have focused on recognizing local predictions of the relationships.But real-world image relationships often determined by the surrounding objects and other contextual information.In this work,we employ this insight to propose a novel framework to deal with the problem of visual relationship detection.The core of the framework is a relationship inference network,which is a recurrent structure designed for combining the global contextual information of the object to infer the relationship of the image.Experimental results on Stanford VRD and Visual Genome demonstrate that the proposed method achieves a good performance both in efficiency and accuracy.Finally,we demonstrate the value of visual relationship on two computer vision tasks:image retrieval and scene graph generation. 展开更多
关键词 Visual relationship deep learning gated recurrent units image retrieval contextual information
下载PDF
基于两阶段动态兴趣识别的购买行为预测模型
2
作者 张春雪 仇丽青 +1 位作者 孙承爱 荆彩霞 《计算机应用》 CSCD 北大核心 2024年第8期2365-2371,共7页
在线购买预测旨在预测用户的购买行为,为购物网站带来可观的商业价值。针对传统模型学习用户历史行为中隐含的兴趣偏好不准确的问题,提出基于两阶段动态兴趣识别的购买行为预测模型,以预测用户购买商品的概率。首先,模型的第一阶段构建... 在线购买预测旨在预测用户的购买行为,为购物网站带来可观的商业价值。针对传统模型学习用户历史行为中隐含的兴趣偏好不准确的问题,提出基于两阶段动态兴趣识别的购买行为预测模型,以预测用户购买商品的概率。首先,模型的第一阶段构建用户-商品的点击频率图,并利用轻量图卷积网络(LightGCN)学习图的上下文特征作为用户的静态兴趣表征;其次,第二阶段采用带有注意力机制的双向门控递归单元(Bi-GRU)探索用户偏好的转化过程;最后,针对潜在的高维特征,建立一个融合动态兴趣和隐含特征的购买预测模型。在2个真实电子商务数据集上的实验结果表明,所提模型与图卷积网络(GCN)模型相比,准确率至少提升0.3个百分点,F1分数至少提升了2.05个百分点。 展开更多
关键词 电子商务 在线购买预测 轻量图卷积神经网络 双向门控递归单元 高阶兴趣上下文特征
下载PDF
基于时序和上下文特征的中文隐式情感分类模型 被引量:5
3
作者 袁景凌 丁远远 +1 位作者 潘东行 李琳 《计算机应用》 CSCD 北大核心 2021年第10期2820-2828,共9页
对社交网络上的海量文本信息进行情感分析可以更好地挖掘网民行为规律,从而帮助决策机构了解舆情倾向以及帮助商家改善服务质量。由于不存在关键情感特征、表达载体形式和文化习俗等因素的影响,中文隐式情感分类任务比其他语言更加困难... 对社交网络上的海量文本信息进行情感分析可以更好地挖掘网民行为规律,从而帮助决策机构了解舆情倾向以及帮助商家改善服务质量。由于不存在关键情感特征、表达载体形式和文化习俗等因素的影响,中文隐式情感分类任务比其他语言更加困难。已有的中文隐式情感分类方法以卷积神经网络(CNN)为主,这些方法存在着无法获取词语的时序信息和在隐式情感判别中未合理利用上下文情感特征的缺陷。为了解决以上问题,采用门控卷积神经网络(GCNN)提取隐式情感句的局部重要信息,采用门控循环单元(GRU)网络增强特征的时序信息;而在隐式情感句的上下文特征处理上,采用双向门控循环单元(BiGRU)+注意力机制(Attention)的组合提取重要情感特征;在获得两种特征后,通过融合层将上下文重要特征融入到隐式情感判别中;最后得到的融合时序和上下文特征的中文隐式情感分类模型被命名为GGBA。在隐式情感分析评测数据集上进行实验,结果表明所提出的GGBA模型在宏平均准确率上比普通的文本CNN即TextCNN提高了3.72%、比GRU提高了2.57%、比中断循环神经网络(DRNN)提高了1.90%,由此可见,GGBA模型在隐式情感分析任务中比基础模型获得了更好的分类性能。 展开更多
关键词 中文隐式情感分类 卷积神经网络 循环神经网络 上下文特征 注意力机制
下载PDF
面向社交媒体评论的上下文语境讽刺检测模型 被引量:5
4
作者 韩虎 赵启涛 +1 位作者 孙天岳 刘国利 《计算机工程》 CAS CSCD 北大核心 2021年第1期66-71,共6页
讽刺是日常交际中一种常见的语用现象,能够丰富说话者的观点并间接地表达说话者的深层含义。讽刺检测任务的研究目标是挖掘目标语句的讽刺倾向。针对讽刺语境表达变化多样以及不同用户、不同主题下的讽刺含义各不相同等特征,构建融合用... 讽刺是日常交际中一种常见的语用现象,能够丰富说话者的观点并间接地表达说话者的深层含义。讽刺检测任务的研究目标是挖掘目标语句的讽刺倾向。针对讽刺语境表达变化多样以及不同用户、不同主题下的讽刺含义各不相同等特征,构建融合用户嵌入与论坛主题嵌入的上下文语境讽刺检测模型。该模型借助ParagraphVector方法的序列学习能力对用户评论文档与论坛主题文档进行编码,从而获取目标分类句的用户讽刺特征与主题特征,并利用一个双向门控循环单元神经网络得到目标句的语句编码。在标准讽刺检测数据集上进行的实验结果表明,与传统Bag-of-Words、CNN等模型相比,该模型能够有效提取语句的上下文语境信息,具有较高的讽刺检测分类准确率。 展开更多
关键词 自然语言处理 上下文语境讽刺检测 深度学习 ParagraphVector模型 双向门控循环单元模型
下载PDF
用户关系和上下文感知的下一个兴趣点推荐 被引量:1
5
作者 柴瑞敏 殷臣 《计算机工程与应用》 CSCD 北大核心 2022年第7期197-205,共9页
随着移动设备和社交软件的普遍应用,下一个兴趣点推荐(next POI recommendation)变成了基于位置的社交网络(LBSN)的一个非常重要的任务。现实生活中用户访问的下一个兴趣点通常受到用户签到序列信息、用户关系和该地点的上下文信息等诸... 随着移动设备和社交软件的普遍应用,下一个兴趣点推荐(next POI recommendation)变成了基于位置的社交网络(LBSN)的一个非常重要的任务。现实生活中用户访问的下一个兴趣点通常受到用户签到序列信息、用户关系和该地点的上下文信息等诸多方面的影响。基于循环神经网络(RNN)的方法已经被广泛的应用到下一个兴趣点推荐中,但是这些基于RNN的方法缺乏对用户关系进行深入建模。为了解决上述问题,提出了一种整合用户关系和门控循环单元(GRU)进行下一个兴趣点推荐的模型(GRU-R),同时该模型能够考虑用户签到序列信息、用户关系、兴趣点的时空信息和类别信息等进行下一个兴趣点推荐。在两个真实公开的数据集上进行实验,结果表明提出的模型比现有主流的下一个兴趣点推荐算法具有更高的推荐准确性。 展开更多
关键词 下一个兴趣点推荐 循环神经网络 用户关系 上下文信息 门控循环单元
下载PDF
混合神经网络和条件随机场相结合的文本情感分析 被引量:4
6
作者 翟学明 魏巍 《智能系统学报》 CSCD 北大核心 2021年第2期202-209,共8页
针对当前文本情感分析中神经网络模型训练时间长,上下文信息学习不足的问题,该文提出了一种结合混合神经网络和条件随机场(conditional random fields,CRF)的模型。该模型将神经网络作为语言模型,结合了卷积神经网络(convolutional neur... 针对当前文本情感分析中神经网络模型训练时间长,上下文信息学习不足的问题,该文提出了一种结合混合神经网络和条件随机场(conditional random fields,CRF)的模型。该模型将神经网络作为语言模型,结合了卷积神经网络(convolutional neural networks,CNN)与双向门控循环单元(bidirectional gated recurrent unit,Bi-GRU)两种神经网络获得的语义信息和结构特征,采用条件随机场模型作为分类器,计算情感概率分布,进而能够准确地判断情感类别。该文的模型在NLPCC 2014数据集上进行了测试,准确率为91.74%,与其他分类模型相比,可以获得更好的准确性和F值。 展开更多
关键词 卷积神经网络 门控循环单元 条件随机场 文本情感分析 语言模型 语义特征 上下文信息 分类器
下载PDF
一种融合上下文特征的中文隐式情感分类模型 被引量:12
7
作者 潘东行 袁景凌 +1 位作者 李琳 盛德明 《计算机工程与科学》 CSCD 北大核心 2020年第2期341-350,共10页
对网络上海量的文本数据进行情感分析,可以更好地挖掘网民行为规律、帮助决策机构了解舆情倾向和改善商家服务质量。在实际表达中,人们除了采用带有明显情感词的主观表达外,还采用含蓄的方式表达自己的主观倾向。带有显式情感词的文本... 对网络上海量的文本数据进行情感分析,可以更好地挖掘网民行为规律、帮助决策机构了解舆情倾向和改善商家服务质量。在实际表达中,人们除了采用带有明显情感词的主观表达外,还采用含蓄的方式表达自己的主观倾向。带有显式情感词的文本情感分析作为自然语言处理领域的基础性研究任务,已经取得了丰富的研究成果。然而,针对隐式文本的情感分析技术还处于起步阶段。与显式情感分析任务相比,隐式情感分类任务更加困难。隐式表达文本具有中立性表达、缺乏情感词和上下文依赖的特点,使得传统的文本分类方法不再适用。针对以上问题,采用word2vec词嵌入技术提取文本特征,分别进行了基于TextCNN、LSTM和BiGRU分类模型的研究。在各个深度分类模型研究基础上,还进行了融合注意力机制的分类模型研究。针对隐式表达对上下文内容依赖的特点,设计了一种融合上下文语义特征和注意力机制的分类模型,增强了部分中立性隐式表达句的分类效果。最后在SMP2019公开数据集上进行了实验,取得了比上述几种基础深度网络模型与融合注意力机制分类模型更好的分类效果。 展开更多
关键词 中文隐式情感分析 卷积神经网络 循环神经网络 上下文特征 注意力机制
下载PDF
融合BERT语境词向量的译文质量估计方法研究 被引量:7
8
作者 李培芸 李茂西 +1 位作者 裘白莲 王明文 《中文信息学报》 CSCD 北大核心 2020年第3期56-63,共8页
蕴含语义、句法和上下文信息的语境词向量作为一种动态的预训练词向量,在自然语言处理的下游任务中有着广泛应用。然而,在机器译文质量估计中,没有相关研究工作涉及语境词向量。该文提出利用堆叠双向长短时记忆网络将BERT语境词向量引... 蕴含语义、句法和上下文信息的语境词向量作为一种动态的预训练词向量,在自然语言处理的下游任务中有着广泛应用。然而,在机器译文质量估计中,没有相关研究工作涉及语境词向量。该文提出利用堆叠双向长短时记忆网络将BERT语境词向量引入神经译文质量估计中,并通过网络并联的方式与传统的译文质量向量相融合。在CWMT18译文质量估计评测任务数据集上的实验结果表明,融合中上层的BERT语境词向量均显著提高了译文质量估计与人工评价的相关性,并且当对BERT语境词向量的最后4层表示平均池化后引入译文质量估计中对系统性能的提高幅度最大。实验分析进一步揭示了融合语境词向量的方法能利用译文的流利度特征来提高翻译质量估计的效果。 展开更多
关键词 神经译文质量估计 语境词向量 循环神经网络 编码器-解码器网络 质量向量
下载PDF
基于Ngram+Bi-GRU的多家族恶意域名检测 被引量:5
9
作者 王娟娟 刘雄飞 晏榕璟 《中国电子科学研究院学报》 北大核心 2021年第12期1270-1275,1282,共7页
针对现有恶意域名检测方法存在检测精度不高和检测范围局限等问题,提出一种基于Ngram+Bi-GRU的多家族恶意域名检测算法。首先,利用Ngram模型对去除顶级域名的剩余域名级进行分割,获取到包含上下文语义信息的多个域名字符片段序列,并将... 针对现有恶意域名检测方法存在检测精度不高和检测范围局限等问题,提出一种基于Ngram+Bi-GRU的多家族恶意域名检测算法。首先,利用Ngram模型对去除顶级域名的剩余域名级进行分割,获取到包含上下文语义信息的多个域名字符片段序列,并将域名字符片段序列转换成向量;然后,利用双向门控循环型网络(Bi-Directional Gated Recurrent Unit, Bi-GRU)自动学习域名向量的特征;最后,利用Softmax分类器实现合法域名与恶意域名的分类。通过在360Netlab和Malware Domain List等多家族恶意域名集上进行测试,算法运行结果表明,本文模型可对19种家族恶意域名保持检测精度在93%以上,平均检测精度为94.92%,并与当前主流的基于域名字符特征的恶意域名检测算法相比,本文模型在保持检测精度较高的基础上具有更广的检测范围。 展开更多
关键词 多家族恶意域名检测 Ngram 双向门控循环网络 上下文语义信息
下载PDF
上下文特征注入融合的空气污染物浓度预测 被引量:1
10
作者 魏思 李欣泽 +2 位作者 郤丽媛 刘紫君 董哲为 《计算机技术与发展》 2023年第9期196-201,共6页
空气质量预测能够预知区域空间内的大气污染物浓度,对污染防治、环境保护和人身健康等具有非常重要的意义。针对现有空气污染物预测模型未能充分挖掘和利用上下文因素的影响和作用,提出了一种上下文特征注入的空气污染物预测模型。首先... 空气质量预测能够预知区域空间内的大气污染物浓度,对污染防治、环境保护和人身健康等具有非常重要的意义。针对现有空气污染物预测模型未能充分挖掘和利用上下文因素的影响和作用,提出了一种上下文特征注入的空气污染物预测模型。首先,通过循环神经网络和深度置信网络分别学习和提取空气污染物浓度数据的时间序列特征和上下文特征。然后,使用向量融合机制将提取到的上下文特征注入到时间序列特征中,生成新的融合特征。最后,将新的高阶融合特征送入预测器,对空气污染物浓度做出准确可靠的预测。实验选用2017年1月至2021年7月共55个月的PM2.5污染物浓度数据,并与LSTM、GRU、BiLSTM预测模型相比较,结果表明提出的特征注入模型在多种场景下都能够准确地拟合空气污染物浓度的真实值,预测精度优于传统循环神经网络模型,各项评价指标均较好,表现出较强的适应性和准确性。 展开更多
关键词 空气污染物浓度 PM2.5 时间序列 上下文因素 特征融合 门控循环单元
下载PDF
语境再现线索导向对二语读后续写协同效应的影响 被引量:1
11
作者 王启 钟丽珍 +2 位作者 王伟权 杨航 钟文蓓 《中国外语》 CSSCI 北大核心 2022年第4期62-69,共8页
读后续写为开放性写作,不同学习者的续作往往差别较大,无法确保其协同强度和促学效果最大化。本研究设计可再现前文语境的线索导向,以加强续写内容与前读材料之间的联系,旨在解决上述问题。在本研究中,两组英语学习者分别对同一材料的... 读后续写为开放性写作,不同学习者的续作往往差别较大,无法确保其协同强度和促学效果最大化。本研究设计可再现前文语境的线索导向,以加强续写内容与前读材料之间的联系,旨在解决上述问题。在本研究中,两组英语学习者分别对同一材料的甲、乙两个版本进行读后续写。甲版本在结束处植入可再现前文语境的线索导向,乙版本则无该导向。结果发现,该线索导向:(1)显著增加了读后续写的续作长度;(2)显著提升了被试对前文词语和词块的采用率;(3)显著减少了冠词偏误,但却催生了更多的中式英语,对主谓一致、冠词、系动词、不定式、时态等方面的偏误则无显著影响。研究结果表明,线索导向可增强读后续写的协同效应,从而弥补读后续写的促学短板。 展开更多
关键词 线索导向 读后续写 协同效应 二语学习
原文传递
A machine learning pipeline for fuel-economical driving model
12
作者 Neetika Jain Sangeeta Mittal 《International Journal of Intelligent Computing and Cybernetics》 EI 2022年第4期473-496,共24页
Purpose-A cost-effective way to achieve fuel economy is to reinforce positive driving behaviour.Driving behaviour can be controlled if drivers can be alerted for behaviour that results in poor fuel economy.Fuel consum... Purpose-A cost-effective way to achieve fuel economy is to reinforce positive driving behaviour.Driving behaviour can be controlled if drivers can be alerted for behaviour that results in poor fuel economy.Fuel consumption must be tracked and monitored instantaneously rather than tracking average fuel economy for the entire trip duration.A single-step application of machine learning(ML)is not sufficient to model prediction of instantaneous fuel consumption and detection of anomalous fuel economy.The study designs an ML pipeline to track and monitor instantaneous fuel economy and detect anomalies.Design/methodology/approach-This research iteratively applies different variations of a two-step ML pipeline to the driving dataset for hatchback cars.The first step addresses the problem of accurate measurement and prediction of fuel economy using time series driving data,and the second step detects abnormal fuel economy in relation to contextual information.Long short-term memory autoencoder method learns and uses the most salient features of time series data to build a regression model.The contextual anomaly is detected by following two approaches,kernel quantile estimator and one-class support vector machine.The kernel quantile estimator sets dynamic threshold for detecting anomalous behaviour.Any error beyond a threshold is classified as an anomaly.The one-class support vector machine learns training error pattern and applies the model to test data for anomaly detection.The two-step ML pipeline is further modified by replacing long short term memory autoencoder with gated recurrent network autoencoder,and the performance of both models is compared.The speed recommendations and feedback are issued to the driver based on detected anomalies for controlling aggressive behaviour.Findings-A composite long short-term memory autoencoder was compared with gated recurrent unit autoencoder.Both models achieve prediction accuracy within a range of 98%-100%for prediction as a first step.Recall and accuracy metrics for anomaly detection using kernel quantile estimator remains within 98%-100%,whereas the one-class support vectormachine approach performs within the range of 99.3%-100%.Research limitations/implications-The proposed approach does not consider socio-demographics or physiological information of drivers due to privacy concerns.However,it can be extended to correlate driver’s physiological state such as fatigue,sleep and stress to correlate with driving behaviour and fuel economy.The anomaly detection approach here is limited to providing feedback to driver,it can be extended to give contextual feedback to the steering controller or throttle controller.In the future,a controller-based system can be associated with an anomaly detection approach to control the acceleration and braking action of the driver.Practical implications-The suggested approach is helpful in monitoring and reinforcing fuel-economical driving behaviour among fleet drivers as per different environmental contexts.It can also be used as a training tool for improving driving efficiency for new drivers.It keeps drivers engaged positively by issuing a relevant warning for significant contextual anomalies and avoids issuing a warning for minor operational errors.Originality/value-This paper contributes to the existing literature by providing anMLpipeline approach to track and monitor instantaneous fuel economy rather than relying on average fuel economy values.The approach is further extended to detect contextual driving behaviour anomalies and optimises fuel economy.The main contributions for this approach are as follows:(1)a prediction model is applied to fine-grained time series driving data to predict instantaneous fuel consumption.(2)Anomalous fuel economy is detected by comparing prediction error against a threshold and analysing error patterns based on contextual information. 展开更多
关键词 Eco-driving Fuel economy contextual model Naturalistic driving Deep learning Anomaly detection Long short term memory Gated recurrent unit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部