Rice culm carbohydrate transport can simultaneously affect grain filling and stem lodging resistance by regulating non-structural carbohydrate(NSC) and structural carbohydrate(SC) contents. However, the relationship b...Rice culm carbohydrate transport can simultaneously affect grain filling and stem lodging resistance by regulating non-structural carbohydrate(NSC) and structural carbohydrate(SC) contents. However, the relationship between carbohydrate transposition and culm strength is not well documented. Accordingly, a high-yielding hybrid rice cultivar(Y Liangyou 2) was tested under different N fertilization regimes at two locations, Taoyuan(a special high-yield eco-site), Yunnan province and Danyang(a representative eco-site of the middle and lower Yangtze), Jiangsu province, China. Significantly higher grain yield and basal stem strength were found at Taoyuan than Danyang under all N rates throughout the two-year experiment. At heading stage, soluble sugars, starch, cellulose and lignin contents of the basal culm at Taoyuan were significantly 132.0%, 73.7%, 1.2%, and 62.7% higher than those at Danyang, respectively. At 20 days after heading, soluble sugars and starch content at Taoyuan decreased significantly compared to Danyang, but lignin content remained higher. Culm carbohydrate transport to kernels at Taoyuan was significantly greater than that at Danyang, and the proportion of soluble sugars and starch was correspondingly 62.9%lower. However, the proportion of lignin and cellulose was 22.7% higher at Taoyuan than that at Danyang. Soluble sugars and starch partitioning were significantly reduced under an increased nitrogen application rate, but SC partitioning was little affected. There were significant positive correlations between basal culm bending stress and dry weight and cellulose and lignin proportions at both locations under all N rates, suggesting that the higher SC proportion at 20 days after heading was primarily responsible for culm strength.These results suggest that high-yielding rice populations with greater culm strength require both moderate NSC transport and greater SC accumulation.展开更多
Significant achievements have been made in breeding programs for the heavy-panicle-type(HPT)rice(Oryza sativa) in Southwest China. The HPT varieties now exhibit excellent lodging resistance,allowing them to overcome t...Significant achievements have been made in breeding programs for the heavy-panicle-type(HPT)rice(Oryza sativa) in Southwest China. The HPT varieties now exhibit excellent lodging resistance,allowing them to overcome the greater pressures caused by heavy panicles. However, the genetic mechanism of this lodging resistance remains elusive. Here, we isolated a major quantitative trait locus, Panicle Neck Diameter 1(PND1), andidentified the causal gene as GRAIN NUMBER 1 A/CYTOKININ OXIDASE 2(Gn1 A/Os CKX2). The null gn1 a allele from rice line R498(gn1 aR498) improved lodging resistance through increasing the culm diameter and promoting crown root development.Loss-of-function of Gn1 a/Os CKX2 led to cytokinin accumulation in the crown root tip and accelerated the development of adventitious roots. Gene pyramiding between the null gn1 aR498 allele with two gain-of-function alleles, STRONG CULM 2(SCM2)and SCM3, further improved lodging resistance.Moreover, Gn1 a/Os CKX2 had minimal influence on overall rice quality. Our research thus highlights the distinct genetic components of lodging resistance of HPT varieties and provides a strategy for tailormade crop improvement of both yield and lodging resistance in rice.展开更多
基金supported by the National Natural Science Foundation of China (31501268)National Key Research and Development Program of China (2016YFD0300501)+1 种基金National Key Technology R&D Program of China (2015BAC02B02)the Agricultural Science and Technology Innovation Program of CAAS (Y2016PT12, Y2016XT01)
文摘Rice culm carbohydrate transport can simultaneously affect grain filling and stem lodging resistance by regulating non-structural carbohydrate(NSC) and structural carbohydrate(SC) contents. However, the relationship between carbohydrate transposition and culm strength is not well documented. Accordingly, a high-yielding hybrid rice cultivar(Y Liangyou 2) was tested under different N fertilization regimes at two locations, Taoyuan(a special high-yield eco-site), Yunnan province and Danyang(a representative eco-site of the middle and lower Yangtze), Jiangsu province, China. Significantly higher grain yield and basal stem strength were found at Taoyuan than Danyang under all N rates throughout the two-year experiment. At heading stage, soluble sugars, starch, cellulose and lignin contents of the basal culm at Taoyuan were significantly 132.0%, 73.7%, 1.2%, and 62.7% higher than those at Danyang, respectively. At 20 days after heading, soluble sugars and starch content at Taoyuan decreased significantly compared to Danyang, but lignin content remained higher. Culm carbohydrate transport to kernels at Taoyuan was significantly greater than that at Danyang, and the proportion of soluble sugars and starch was correspondingly 62.9%lower. However, the proportion of lignin and cellulose was 22.7% higher at Taoyuan than that at Danyang. Soluble sugars and starch partitioning were significantly reduced under an increased nitrogen application rate, but SC partitioning was little affected. There were significant positive correlations between basal culm bending stress and dry weight and cellulose and lignin proportions at both locations under all N rates, suggesting that the higher SC proportion at 20 days after heading was primarily responsible for culm strength.These results suggest that high-yielding rice populations with greater culm strength require both moderate NSC transport and greater SC accumulation.
基金supported by the National Natural Science Foundation of China(92535301)Sichuan Science and Technology Program(2021YJ0501)。
文摘Significant achievements have been made in breeding programs for the heavy-panicle-type(HPT)rice(Oryza sativa) in Southwest China. The HPT varieties now exhibit excellent lodging resistance,allowing them to overcome the greater pressures caused by heavy panicles. However, the genetic mechanism of this lodging resistance remains elusive. Here, we isolated a major quantitative trait locus, Panicle Neck Diameter 1(PND1), andidentified the causal gene as GRAIN NUMBER 1 A/CYTOKININ OXIDASE 2(Gn1 A/Os CKX2). The null gn1 a allele from rice line R498(gn1 aR498) improved lodging resistance through increasing the culm diameter and promoting crown root development.Loss-of-function of Gn1 a/Os CKX2 led to cytokinin accumulation in the crown root tip and accelerated the development of adventitious roots. Gene pyramiding between the null gn1 aR498 allele with two gain-of-function alleles, STRONG CULM 2(SCM2)and SCM3, further improved lodging resistance.Moreover, Gn1 a/Os CKX2 had minimal influence on overall rice quality. Our research thus highlights the distinct genetic components of lodging resistance of HPT varieties and provides a strategy for tailormade crop improvement of both yield and lodging resistance in rice.