Repeated blast impacts on personnel in explosive environments can exacerbate craniocerebral trauma.Most existing studies focus on the injury effects of a single blast,lacking in-depth analysis on the injury effects an...Repeated blast impacts on personnel in explosive environments can exacerbate craniocerebral trauma.Most existing studies focus on the injury effects of a single blast,lacking in-depth analysis on the injury effects and cumulative effects of repeated blasts.Therefore,rats were used as the experimental samples to suffer from explosion blasts with different peak air overpressures(167 kPa~482 kPa)and varying number of repeated blasts.The cumulative effect of craniocerebral trauma was most pronounced for moderate repeated blast,showing approximately 95%increase of trauma severity with penta blast,and an approximately 85%increase of trauma severity with penta minor blast.The cumulative effect of craniocerebral trauma from severe,repeated blast has a smaller rate of change compared to the other two conditions.The severity of trauma from penta blast increased by approximately 69%compared to a single blast.Comprehensive physiological,pathological and biochemical analysis show that the degree of neurological trauma caused by repeated blasts is higher than that of single blasts,and the pathological trauma to brain tissue is more extensive and severe.The trauma degree remains unchanged after double blast,increases by one grade after triple or quadruple blast,and increases by two grades after penta blast.展开更多
Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content an...Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content and low permeability,a method of improving permeability through deep-hole cumulative blasting is applied to develop initial directional fractures using a jet flow.Under the action of the blasting stress wave and detonation gas wedge,the fractures extend over a large range within the coal,thereby improving coalbed permeability.This study focuses on the criteria of cumulative blasting-induced coalbed fracturing based on a literature review of the penetration effect of cumulative blasting.On this basis,we summarize the coal fracturing zone,crack extension process,and the key technologies of charging and hole sealing for cumulative blasting.In addition,the latest research progress in the optimization of field test drilling and blasting parameters for cumulative blasting is introduced.Research findings indicate that the permeability improvement mechanism of cumulative blasting could be further enhanced,and the technology and technical equipment are in urgent need of improvement.Finally,development trends in the cumulative blasting permeability improvement technique are identified.展开更多
In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal ...In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.展开更多
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas...In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.展开更多
The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparat...The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, hut the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers.展开更多
Drilling and blasting play vital roles in opencast mining. These operations not only affect the cost of production directly but as well and significantly, the overall operational costs. This research was carried out t...Drilling and blasting play vital roles in opencast mining. These operations not only affect the cost of production directly but as well and significantly, the overall operational costs. This research was carried out to find a possible way of optimizing the drilling and blasting operations in an open pit mine of Somair (Société des Mines de l’Air), in the Niger Republic. In order to optimize the drilling operation, the time taken by two drilling machines to accomplish the same task was analyzed statistically. The result indicates that the Down the Hole Hammer Drilling Rig (DMNo406) is more efficient than the Drill Master (DM405). The relative unit consumption of two explosives (Explus and Nitram 9), when used under the same operating conditions, were also considered and the results indicate Explus to be more economical per unit consumption with a range of 0.15 g/t–0.183 g/t, when compared with Nitram 9 with a unit consumption range of 0.19 g/t-0.24 g/t in the study area.展开更多
The cumulative blasting using PVC slotting pipe was tested for rapid driving in hard-rock roadway construction. First, the outhors optimized blasting parameters on 2.2 m scheme, and did both-sides comparative experime...The cumulative blasting using PVC slotting pipe was tested for rapid driving in hard-rock roadway construction. First, the outhors optimized blasting parameters on 2.2 m scheme, and did both-sides comparative experiment of the surrounding holes after the blasting success. The results show that the application of slotting tube obtains four more cut contours than the case without it. Finally we did full-section control and non-control blasting comparative experiment, the results show that the rates of half-hole marks and the non-smooth grades of the cut contours can reach 95%, hole spacing is expanded to larger than 550 mm, and 550 mm is the best under the K2 limestone conditions.展开更多
Blasting technology is widely used to prevent coal bursts by presplitting the overburden in underground coal mines.The control of blasting intensity is important in achieving the optimal pre-split effectiveness and re...Blasting technology is widely used to prevent coal bursts by presplitting the overburden in underground coal mines.The control of blasting intensity is important in achieving the optimal pre-split effectiveness and reducing the damage to roadway structures that are subjected to blasting vibrations.As a critical parameter to measure the blasting intensity,the peak particle velocity(PPV)of vibration induced by blasting,should be accurately predicted,and can provide a useful guideline for the design of blasting parameters and the evaluation of the damage.In this paper,various factors that influence PPV,induced by roof pre-split blasting,were analyzed using engineering blasting experiments and numerical simulations.The results showed that PPV was affected by many factors,including charge distribution design(total charge and maximum charge per hole),spacing of explosive centers,as well as propagation distance and path.Two parameters,average charge coefficient and spatial discretization coefficient were used to quantitatively characterize the influences of charge distribution and spacing of explosive centers on the PPV induced by roof pre-split blasting.Then,a model consisting of the combination of artificial neural network(ANN)and genetic algorithm(GA)was adopted to predict the PPV that was induced by roof presplit blasting.A total of 24 rounds of roof pre-split blasting experiments were carried out in a coal mine,and vibration signals were collected using a microseismic(MS)monitoring system to construct the neural network datasets.To verify the efficiency of the proposed GA-ANN model,empirical correlations were applied to predict PPV for the same datasets.The results showed that the GA-ANN model had superiority in predicting PPV compared to empirical correlations.Finally,sensitivity analysis was performed to evaluate the impacts of input parameters on PPV.The research results are of great significance to improve the prediction accuracy of PPV induced by roof pre-splitting blasting.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12372356)Postgraduate Scientific Research In-novation Project of Hunan Province(Grant No.CX20221044).
文摘Repeated blast impacts on personnel in explosive environments can exacerbate craniocerebral trauma.Most existing studies focus on the injury effects of a single blast,lacking in-depth analysis on the injury effects and cumulative effects of repeated blasts.Therefore,rats were used as the experimental samples to suffer from explosion blasts with different peak air overpressures(167 kPa~482 kPa)and varying number of repeated blasts.The cumulative effect of craniocerebral trauma was most pronounced for moderate repeated blast,showing approximately 95%increase of trauma severity with penta blast,and an approximately 85%increase of trauma severity with penta minor blast.The cumulative effect of craniocerebral trauma from severe,repeated blast has a smaller rate of change compared to the other two conditions.The severity of trauma from penta blast increased by approximately 69%compared to a single blast.Comprehensive physiological,pathological and biochemical analysis show that the degree of neurological trauma caused by repeated blasts is higher than that of single blasts,and the pathological trauma to brain tissue is more extensive and severe.The trauma degree remains unchanged after double blast,increases by one grade after triple or quadruple blast,and increases by two grades after penta blast.
基金The project was supported by the National Science Foundation of China(41430640,U1704242).
文摘Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content and low permeability,a method of improving permeability through deep-hole cumulative blasting is applied to develop initial directional fractures using a jet flow.Under the action of the blasting stress wave and detonation gas wedge,the fractures extend over a large range within the coal,thereby improving coalbed permeability.This study focuses on the criteria of cumulative blasting-induced coalbed fracturing based on a literature review of the penetration effect of cumulative blasting.On this basis,we summarize the coal fracturing zone,crack extension process,and the key technologies of charging and hole sealing for cumulative blasting.In addition,the latest research progress in the optimization of field test drilling and blasting parameters for cumulative blasting is introduced.Research findings indicate that the permeability improvement mechanism of cumulative blasting could be further enhanced,and the technology and technical equipment are in urgent need of improvement.Finally,development trends in the cumulative blasting permeability improvement technique are identified.
基金Supported by Project from National Natural Science Foundation of China(50674111)the National key Technology R&D Program in 10th Five Years Plan of China
文摘In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.
基金financially supported by the National Natural Science Fund of China(Nos.51004003 and 51474009)Anhui Province Education Department Natural Science Fund Key Project of China(No.KJ2010A091)
文摘In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.
基金Project (50490272) supported by the National Natural Science Foundation of ChinaProject(040109) supported by the Doctor Degree Paper Innovation Engineering of Central South University
文摘The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, hut the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers.
文摘Drilling and blasting play vital roles in opencast mining. These operations not only affect the cost of production directly but as well and significantly, the overall operational costs. This research was carried out to find a possible way of optimizing the drilling and blasting operations in an open pit mine of Somair (Société des Mines de l’Air), in the Niger Republic. In order to optimize the drilling operation, the time taken by two drilling machines to accomplish the same task was analyzed statistically. The result indicates that the Down the Hole Hammer Drilling Rig (DMNo406) is more efficient than the Drill Master (DM405). The relative unit consumption of two explosives (Explus and Nitram 9), when used under the same operating conditions, were also considered and the results indicate Explus to be more economical per unit consumption with a range of 0.15 g/t–0.183 g/t, when compared with Nitram 9 with a unit consumption range of 0.19 g/t-0.24 g/t in the study area.
文摘The cumulative blasting using PVC slotting pipe was tested for rapid driving in hard-rock roadway construction. First, the outhors optimized blasting parameters on 2.2 m scheme, and did both-sides comparative experiment of the surrounding holes after the blasting success. The results show that the application of slotting tube obtains four more cut contours than the case without it. Finally we did full-section control and non-control blasting comparative experiment, the results show that the rates of half-hole marks and the non-smooth grades of the cut contours can reach 95%, hole spacing is expanded to larger than 550 mm, and 550 mm is the best under the K2 limestone conditions.
基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX21_2378)National Natural Science Foundation of China(Grant Nos.51874292 and 51804303).
文摘Blasting technology is widely used to prevent coal bursts by presplitting the overburden in underground coal mines.The control of blasting intensity is important in achieving the optimal pre-split effectiveness and reducing the damage to roadway structures that are subjected to blasting vibrations.As a critical parameter to measure the blasting intensity,the peak particle velocity(PPV)of vibration induced by blasting,should be accurately predicted,and can provide a useful guideline for the design of blasting parameters and the evaluation of the damage.In this paper,various factors that influence PPV,induced by roof pre-split blasting,were analyzed using engineering blasting experiments and numerical simulations.The results showed that PPV was affected by many factors,including charge distribution design(total charge and maximum charge per hole),spacing of explosive centers,as well as propagation distance and path.Two parameters,average charge coefficient and spatial discretization coefficient were used to quantitatively characterize the influences of charge distribution and spacing of explosive centers on the PPV induced by roof pre-split blasting.Then,a model consisting of the combination of artificial neural network(ANN)and genetic algorithm(GA)was adopted to predict the PPV that was induced by roof presplit blasting.A total of 24 rounds of roof pre-split blasting experiments were carried out in a coal mine,and vibration signals were collected using a microseismic(MS)monitoring system to construct the neural network datasets.To verify the efficiency of the proposed GA-ANN model,empirical correlations were applied to predict PPV for the same datasets.The results showed that the GA-ANN model had superiority in predicting PPV compared to empirical correlations.Finally,sensitivity analysis was performed to evaluate the impacts of input parameters on PPV.The research results are of great significance to improve the prediction accuracy of PPV induced by roof pre-splitting blasting.