Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems kn...It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems known as PPAD (Polynomial Parity Argument on Directed graphs), for which no polynomial-time solution methods are known, even for two-player games. This paper demonstrates that in fixed-sum two-player games (including zero-sum games), the Nash equilibrium forms a convex set, and has a unique expected payoff. Furthermore, these equilibria are Pareto optimal. Additionally, it is shown that the Nash equilibrium of fixed-sum two-player games can theoretically be found in polynomial time using the principal-dual interior point method, a solution method of linear programming.展开更多
The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is...The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is employed in seismic stability analysis of a slope in this paper. Different from other conventional methods, the VSAM is proposed based on the vector characteristic of force and current stress state of the slope. The dynamic stress state of the slope at any moment under seismic load can he obtained by the DFEM, thus the factor of safety of the slope at any moment during earthquake can be easily obtained with the VSAM in consideration of the DFEM. Then, the global stability of the slope can be estimated on the basis of time-history curve of factor of safety and reliability theory. The VSAM is applied to a homogeneous slope under seismic load. The factor of safety of the slope is 1.30 under gravity only and the dynamic factor of safety under seismic load is 1.21. The calculating results show that the dynamic characteristics and stability state of the slope with input ground motion can be actually analyzed. It is believed that the VSAM is a feasible and practical approach to estimate the dynamic stability of slopes under seismic load.展开更多
Laser ablation coupled with inductively coupled plasma-mass spectrometry (LA-ICP-MS) calibration was conducted with multiple spot analyses on eleven intact rock samples using both an internal standard (IS) method and ...Laser ablation coupled with inductively coupled plasma-mass spectrometry (LA-ICP-MS) calibration was conducted with multiple spot analyses on eleven intact rock samples using both an internal standard (IS) method and a modified constant-sum (MCS) method. Methods were then compared for reported bulk elemental composition of the rocks. The MCS method was based on the sum of eight major elements, which is spatially more stable than one single major ele-ment as used in the IS method, and is quite constant among different rock samples. Calibrations were performed with standard reference materials NIST SRM 610, 612, 614, and 616. Little difference was found between using a single standard and a set of standards, because of the good linearity shown by the reference materials. Comparison of the two calibration methods shows that the MCS method produced better and more stable results than the IS method for heterogeneous samples. With the MCS method, approximately 94% to 95% of the total measurements are within the range of ±100% relative deviation, compared with 82% to 86% with the IS method. The IS method resulted insubstantial overestimations for some rock samples (e.g., 648% for Basalt BCR-2 using NIST SRM 610 as the calibration standard), while the largest deviation with the MCS method was 216% for U in Eagle Ford shale #80 sample. For Quartz latite QLO-1, a relative homogeneous sample, the IS method generated slightly better results than the MCS method. Regardless of method, spatially heterogeneous distribution of elements in the intact rock at the scale of the laser spot is considered to be the main reason for the large relative deviations seen in our work compared to published results.展开更多
There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum ga...There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum game, and prove that it is theoretically a polynomial time algorithm. We implement the Karmarkar method, and a preliminary computational result shows that it performs well for zero-sum games. We also mention an affine scaling method that would help us compute Nash equilibria of general zero-sum games effectively.展开更多
为了研究对任意素数模p的一类广义Kloosterman和的四次均值,利用初等与解析方法、Gauss和以及三角和的转换性质引入了当素数p≡1 mod 4时该均值的计算问题,并将该类均值转化为特征和的简易形式。从计算结果上对均值的估计具有充分性,从...为了研究对任意素数模p的一类广义Kloosterman和的四次均值,利用初等与解析方法、Gauss和以及三角和的转换性质引入了当素数p≡1 mod 4时该均值的计算问题,并将该类均值转化为特征和的简易形式。从计算结果上对均值的估计具有充分性,从计算方法上对广义Kloosterman和各种形式的四次均值研究具有重要的参考价值。此外,这也为指数和均值计算问题提供了一种新的转化思路与方法,必将对有关问题的进一步探索起到推动作用。展开更多
Ecoregion-based height-diameter models were developed in the present study for Scots pine(Pinus sylves-tris L.)stands in Turkiye and included several ecological factors derived from a pre-existing ecoregional classifi...Ecoregion-based height-diameter models were developed in the present study for Scots pine(Pinus sylves-tris L.)stands in Turkiye and included several ecological factors derived from a pre-existing ecoregional classification system.The data were obtained from 2831 sample trees in 292 sample plots.Ten generalized height–diameter models were developed,and the best model(HD10)was selected according to statistical criteria.Then,nonlinear mixed-effects modeling was applied to the best model.The R2 for the generalized height‒diameter model(Richards function)modified by Sharma and Parton is 0.951,and the final model included number of trees,dominant height,and diameter at breast height,with a random parameter associated with each ecoregion attached to the inverse of the mean basal area.The full model predictions using the nonlinear mixed-effects model and the reduced model(HD10)predictions were compared using the nonlinear sum of extra squares test,which revealed significant differences between ecore-gions;ecoregion-based height–diameter models were thus found to be suitable to use.In addition,using these models in appropriate ecoregions was very important for achieving reliable predictions with low prediction errors.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
文摘It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems known as PPAD (Polynomial Parity Argument on Directed graphs), for which no polynomial-time solution methods are known, even for two-player games. This paper demonstrates that in fixed-sum two-player games (including zero-sum games), the Nash equilibrium forms a convex set, and has a unique expected payoff. Furthermore, these equilibria are Pareto optimal. Additionally, it is shown that the Nash equilibrium of fixed-sum two-player games can theoretically be found in polynomial time using the principal-dual interior point method, a solution method of linear programming.
基金Supported by the Program of Yunnan Provincial Institute of Communications Planning,Design and Research (2011(D)11-b)
文摘The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is employed in seismic stability analysis of a slope in this paper. Different from other conventional methods, the VSAM is proposed based on the vector characteristic of force and current stress state of the slope. The dynamic stress state of the slope at any moment under seismic load can he obtained by the DFEM, thus the factor of safety of the slope at any moment during earthquake can be easily obtained with the VSAM in consideration of the DFEM. Then, the global stability of the slope can be estimated on the basis of time-history curve of factor of safety and reliability theory. The VSAM is applied to a homogeneous slope under seismic load. The factor of safety of the slope is 1.30 under gravity only and the dynamic factor of safety under seismic load is 1.21. The calculating results show that the dynamic characteristics and stability state of the slope with input ground motion can be actually analyzed. It is believed that the VSAM is a feasible and practical approach to estimate the dynamic stability of slopes under seismic load.
文摘Laser ablation coupled with inductively coupled plasma-mass spectrometry (LA-ICP-MS) calibration was conducted with multiple spot analyses on eleven intact rock samples using both an internal standard (IS) method and a modified constant-sum (MCS) method. Methods were then compared for reported bulk elemental composition of the rocks. The MCS method was based on the sum of eight major elements, which is spatially more stable than one single major ele-ment as used in the IS method, and is quite constant among different rock samples. Calibrations were performed with standard reference materials NIST SRM 610, 612, 614, and 616. Little difference was found between using a single standard and a set of standards, because of the good linearity shown by the reference materials. Comparison of the two calibration methods shows that the MCS method produced better and more stable results than the IS method for heterogeneous samples. With the MCS method, approximately 94% to 95% of the total measurements are within the range of ±100% relative deviation, compared with 82% to 86% with the IS method. The IS method resulted insubstantial overestimations for some rock samples (e.g., 648% for Basalt BCR-2 using NIST SRM 610 as the calibration standard), while the largest deviation with the MCS method was 216% for U in Eagle Ford shale #80 sample. For Quartz latite QLO-1, a relative homogeneous sample, the IS method generated slightly better results than the MCS method. Regardless of method, spatially heterogeneous distribution of elements in the intact rock at the scale of the laser spot is considered to be the main reason for the large relative deviations seen in our work compared to published results.
文摘There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum game, and prove that it is theoretically a polynomial time algorithm. We implement the Karmarkar method, and a preliminary computational result shows that it performs well for zero-sum games. We also mention an affine scaling method that would help us compute Nash equilibria of general zero-sum games effectively.
文摘为了研究对任意素数模p的一类广义Kloosterman和的四次均值,利用初等与解析方法、Gauss和以及三角和的转换性质引入了当素数p≡1 mod 4时该均值的计算问题,并将该类均值转化为特征和的简易形式。从计算结果上对均值的估计具有充分性,从计算方法上对广义Kloosterman和各种形式的四次均值研究具有重要的参考价值。此外,这也为指数和均值计算问题提供了一种新的转化思路与方法,必将对有关问题的进一步探索起到推动作用。
基金supported by Scientific Research Projects Management Coordinator of Kastamonu University,under grant number KÜ-BAP01/2019-41.
文摘Ecoregion-based height-diameter models were developed in the present study for Scots pine(Pinus sylves-tris L.)stands in Turkiye and included several ecological factors derived from a pre-existing ecoregional classification system.The data were obtained from 2831 sample trees in 292 sample plots.Ten generalized height–diameter models were developed,and the best model(HD10)was selected according to statistical criteria.Then,nonlinear mixed-effects modeling was applied to the best model.The R2 for the generalized height‒diameter model(Richards function)modified by Sharma and Parton is 0.951,and the final model included number of trees,dominant height,and diameter at breast height,with a random parameter associated with each ecoregion attached to the inverse of the mean basal area.The full model predictions using the nonlinear mixed-effects model and the reduced model(HD10)predictions were compared using the nonlinear sum of extra squares test,which revealed significant differences between ecore-gions;ecoregion-based height–diameter models were thus found to be suitable to use.In addition,using these models in appropriate ecoregions was very important for achieving reliable predictions with low prediction errors.