期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microbial biomass in subtropical forest soils: effect of conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation 被引量:12
1
作者 WANG Qing-kui WANG Si-long 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第3期197-200,共4页
Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial bi... Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial biomass in one natural secondary broad-leaved forest and two C. lanceolata plantation sites to estimate the effects of forest conversion on soil microbial biomass at the Huitong Experimental Station of Forestry Ecology, Chinese Academy of Sciences. Concentrations of soil organic carbon, total nitrogen, NH4^+-N and microbial biomass carbon and nitrogen were much lower under C. lanceolata plantations as compared to natural secondary broad-leaved forest. Soil microbial biomass C in the first and second rotation of C. lanceolata plantations was only 53%, 46% of that in natural secondary broad-leaved forest, and microbial biomass N was 97% and 79%, respectively. The contribution of microbial biomass C to soil organic C was also lower in the plantation sites. However, the contribution of microbial N to total nitrogen and NH4^+-N was greater in the C. lanceolata plantation sites. Therefore, conversion of natural secondary broad-leaved forest to C. lanceolata plantation and continuous planting of C. lanceolata led to the decline in soil microbial biomass and the degradation of forest soil in subtropical China. 展开更多
关键词 Soil microbial biomass cunninghamia lanceolata plantation Natural secondary broad-leaved forest Forest conversion
下载PDF
Comparisons of carbon storages in Cunninghamia lanceolata and Michelia macclurei plantations during a 22-year period in southern China 被引量:16
2
作者 NIU Dong WANG Silong OUYANG Zhiyun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第6期801-805,共5页
Tree species composition was important for carbon storage within the same climate range.To quantify the dynamics of ecosystem carbon allocation as affected by different tree species,we measured the above-and below-gro... Tree species composition was important for carbon storage within the same climate range.To quantify the dynamics of ecosystem carbon allocation as affected by different tree species,we measured the above-and below-ground biomass accumulation in 22 years,as well as the tissue carbon concentrations of trees in Cunninghamia lanceolata plantation and Michelia macclurei plantation.Results indicated that M.macclurei plantation significantly stored more carbon(174.8 tons/hm2) than C.lanceolata plantation(154.3 tons/hm2).Most of the carbon was found in the soil pool(57.1% in M.macclurei plantation,55.2% in C.lanceolata plantation).Tree and soil component of M.macclurei plantation possessed significantly higher carbon storage than that of C.lanceolata plantation(p 〈 0.05).No significant difference was found in the carbon storage of understory and forest floor.These results suggest that the broadleaved species(M.macclurei) possesses greater carbon sequestration potential than the coniferous species(C.lanceolata) in southern China. 展开更多
关键词 cunninghamia lanceolata plantation Michelia macclurei plantation carbon storage carbon allocation patterns
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部