An effect of phase compositions(rutile,Rut and anatase,Ant)of TiO_(2)supports on the selective hydrogenation of furfural to furfuryl alcohol was investigated.The 15%wt Ni/TiO_(2)catalysts were prepared by incipient im...An effect of phase compositions(rutile,Rut and anatase,Ant)of TiO_(2)supports on the selective hydrogenation of furfural to furfuryl alcohol was investigated.The 15%wt Ni/TiO_(2)catalysts were prepared by incipient impregnation method.The result showed that Ni supported on anatase-rutile mixed phase TiO_(2)(91%Rut and 9%Ant,A2)provided the highest furfuryl alcohol yield at 43.8%due to the relatively strong Ni-TiO_(2)interaction,its appropriate crystallite sizes,and high average pore sizes.Furthermore,the effect of cobalt as a promoter on Ni/TiO_(2)-A2 catalysts was studied.The result showed that the Ni-Co/TiO_(2)-A2 catalysts exhibited poorer catalyst performances compared to the monometallic Ni/TiO_(2),probably because addition of cobalt can lower the reduction temperatures of Ni/TiO_(2)and weaken the metal-support interaction.展开更多
Catalytic transfer hydroge nation(CTH)of furfural(FF)to furfu ryl alcohol(FFA)has received great intere st in recent years.He rein,Cu-Cs bimetallic supported catalyst,CuCs(2)-MCM,was developed for the CTH of FF to FFA...Catalytic transfer hydroge nation(CTH)of furfural(FF)to furfu ryl alcohol(FFA)has received great intere st in recent years.He rein,Cu-Cs bimetallic supported catalyst,CuCs(2)-MCM,was developed for the CTH of FF to FFA using formic as hydrogen donor.CuCs(2)-MCM achieved a 99.6%FFA yield at an optimized reaction conditions of 170℃,1 h.Cu species in CuCs(2)-MCM had dual functions in catalytically decomposing formic acid to generate hydrogen and hydrogenating FF to FFA.The doping of Cs made the size of Cu particles smaller and improved the dispersion of the Cu active sites.Impo rtantly,the Cs species played a favorable role in enhancing the hydrogenation activity as a promoter by adjusting the surface acidity of Cu species to an appropriate level.Correlation analysis showed that surface acidity is the primary factor to affect the catalytic activity of CuCs(2)-MCM.展开更多
Selective activation of C-O bond is of fundamental importance in the precise conversion of oxygenates into value-added compounds in an atom-economic and sustainable manner, and meanwhile, the structurally well-defined...Selective activation of C-O bond is of fundamental importance in the precise conversion of oxygenates into value-added compounds in an atom-economic and sustainable manner, and meanwhile, the structurally well-defined dual-atoms catalysts (DACs) have been scarcely investigated in this field. In this study, a series of transition metal DACs anchored on nitrogen-doped graphene (TM2/NC, TM=Pt, Ir, Rh, Pd, Ru, Co, Ni and Cu) was constructed to make a comprehensive investigation of their selectivity in the hydrogenative transformation of furfuryl alcohol (FAL), an important biomass platform molecule, to 1,2-pentanediol (1,2-PeD) via selective cleavage of furanic C5-O bond, by density functional theory (DFT) calculations and microkinetic modeling. We found that Ir2/NC demonstrated a high selectivity for the cleavage of furanic C5-O bond to produce 1,2-PeD, while the production of THFAL or 1,5-pentanediol (1,5-PeD) on other TM2/NC catalysts are more favorable. Furthermore, we found that the selective C-O bond cleavage of FAL furan ring is affected by the orbital overlap between the d-orbitals of the anchored metal atoms and the p-orbitals of the adsorbed C atom in FAL, suggesting that the selectivity of the C-O bond cleavage is inextricably related with the electronic property of the anchored metals.展开更多
A series of Cu-MgO catalysts was prepared via a urea-nitrate combustion method, and their catalytic per-formance was examined in the vapor phase hydrogenation of furfural. Characterization results showed that the amou...A series of Cu-MgO catalysts was prepared via a urea-nitrate combustion method, and their catalytic per-formance was examined in the vapor phase hydrogenation of furfural. Characterization results showed that the amount of urea had important effects on the surface area, Cu dispersion and crystallite size of the catalysts. The Cu-MgO catalyst with a Cu loading of 12.1%(mass fraction) showed higher furfural conversion than the catalyst prepared by coprecipitation. The high activity was attributed to the higher dispersion of Cu on the catalyst surface. These results suggest that the combustion method is an efficient and simple route for the preparation of high activity Cu-MgO catalysts for furfural hydrogenation.展开更多
文摘An effect of phase compositions(rutile,Rut and anatase,Ant)of TiO_(2)supports on the selective hydrogenation of furfural to furfuryl alcohol was investigated.The 15%wt Ni/TiO_(2)catalysts were prepared by incipient impregnation method.The result showed that Ni supported on anatase-rutile mixed phase TiO_(2)(91%Rut and 9%Ant,A2)provided the highest furfuryl alcohol yield at 43.8%due to the relatively strong Ni-TiO_(2)interaction,its appropriate crystallite sizes,and high average pore sizes.Furthermore,the effect of cobalt as a promoter on Ni/TiO_(2)-A2 catalysts was studied.The result showed that the Ni-Co/TiO_(2)-A2 catalysts exhibited poorer catalyst performances compared to the monometallic Ni/TiO_(2),probably because addition of cobalt can lower the reduction temperatures of Ni/TiO_(2)and weaken the metal-support interaction.
基金supported by the National Natural Science Fund of China(Nos.21776234,21978246)。
文摘Catalytic transfer hydroge nation(CTH)of furfural(FF)to furfu ryl alcohol(FFA)has received great intere st in recent years.He rein,Cu-Cs bimetallic supported catalyst,CuCs(2)-MCM,was developed for the CTH of FF to FFA using formic as hydrogen donor.CuCs(2)-MCM achieved a 99.6%FFA yield at an optimized reaction conditions of 170℃,1 h.Cu species in CuCs(2)-MCM had dual functions in catalytically decomposing formic acid to generate hydrogen and hydrogenating FF to FFA.The doping of Cs made the size of Cu particles smaller and improved the dispersion of the Cu active sites.Impo rtantly,the Cs species played a favorable role in enhancing the hydrogenation activity as a promoter by adjusting the surface acidity of Cu species to an appropriate level.Correlation analysis showed that surface acidity is the primary factor to affect the catalytic activity of CuCs(2)-MCM.
基金the National Key R&D Program of China(No.2022YFA1504601)Startup Program of the State Key Laboratory for Oxo Synthesis and Selective Oxidation of LICP,China(No.E0SX0184)+1 种基金the National Natural Science Foundation of China(Nos.22102193,21972151)the Key Research Program of Frontier Science of CAS(No.QYZDJSSW-SLH051).
文摘Selective activation of C-O bond is of fundamental importance in the precise conversion of oxygenates into value-added compounds in an atom-economic and sustainable manner, and meanwhile, the structurally well-defined dual-atoms catalysts (DACs) have been scarcely investigated in this field. In this study, a series of transition metal DACs anchored on nitrogen-doped graphene (TM2/NC, TM=Pt, Ir, Rh, Pd, Ru, Co, Ni and Cu) was constructed to make a comprehensive investigation of their selectivity in the hydrogenative transformation of furfuryl alcohol (FAL), an important biomass platform molecule, to 1,2-pentanediol (1,2-PeD) via selective cleavage of furanic C5-O bond, by density functional theory (DFT) calculations and microkinetic modeling. We found that Ir2/NC demonstrated a high selectivity for the cleavage of furanic C5-O bond to produce 1,2-PeD, while the production of THFAL or 1,5-pentanediol (1,5-PeD) on other TM2/NC catalysts are more favorable. Furthermore, we found that the selective C-O bond cleavage of FAL furan ring is affected by the orbital overlap between the d-orbitals of the anchored metal atoms and the p-orbitals of the adsorbed C atom in FAL, suggesting that the selectivity of the C-O bond cleavage is inextricably related with the electronic property of the anchored metals.
文摘A series of Cu-MgO catalysts was prepared via a urea-nitrate combustion method, and their catalytic per-formance was examined in the vapor phase hydrogenation of furfural. Characterization results showed that the amount of urea had important effects on the surface area, Cu dispersion and crystallite size of the catalysts. The Cu-MgO catalyst with a Cu loading of 12.1%(mass fraction) showed higher furfural conversion than the catalyst prepared by coprecipitation. The high activity was attributed to the higher dispersion of Cu on the catalyst surface. These results suggest that the combustion method is an efficient and simple route for the preparation of high activity Cu-MgO catalysts for furfural hydrogenation.