The effects of different curing systems on the properties of high volume fine mineral powder RPC (reactive powder concrete) and the appearances of hydrates were studied. The experimental results show that dry-heatin...The effects of different curing systems on the properties of high volume fine mineral powder RPC (reactive powder concrete) and the appearances of hydrates were studied. The experimental results show that dry-heating curing promotes the development of pozzolanic reactivity of fine mineral powder; due to low cement content, 0.20 water-bind ratio and high reactive fine mineral powder content, the strength of RPC increases by around 200% after steam curing and subsequent dry-heating curing. Scanning electron microscopy and energy spectrum diagram showed that: after the high volume fine mineral powder RPC with 0.16 water-bind ratio underwent steam curing and dry-heating curing, there was no significant change in the appearance of hydrates; after the RPC with 0.20 water-bind ratio, the cement content of 150 kg/m3 and more steel slag powder underwent dry-heating curing, there was a certain change in the appearance of C-S-H, the structure of gel was more compact and was uniformly distributed, and the Ca/Si of C-S-H gel decreased from 1.41 to around 1.20.展开更多
The crystal structure and morphology of the mineralization products were studied by scanning electron microscopy(SEM)and X-ray diffraction(XRD),and the thermal properties were studied by thermogravimetric-differential...The crystal structure and morphology of the mineralization products were studied by scanning electron microscopy(SEM)and X-ray diffraction(XRD),and the thermal properties were studied by thermogravimetric-differential scanning calorimetry(DSC)analysis.The changes of microorganism quantity and enzyme activity in pore solution with time were measured.The experimental results show that microorganism quantity and enzyme activity in pore solution reach the maximum at 50-60 h,mineralization curing begins at this time,the strength of microbial mineralized steel slag reaches the maximum.This study provides a good selection basis for selecting the optimum mineralization system for the production of microbial mineralized steel slag products.Bacterial mineralization can accelerate the rate of carbon sequestration in the mineralization process.The compressive strength of steel slag with 1.5% bacterial can reach up to 55.6 MPa.The microstructure and thermal properties of calcium carbonate precipitate induced by the enzymes of bacillus subtilis differs from the chemical precipitation in pore solution of steel slag.Through the analysis of the mineralized products of steel slag,the reaction rate of free calcium oxide and free magnesium oxide in steel slag after the addition of microorganisms is significantly increased,which improves the stability of steel slag as cementitious material.Meanwhile,the production of calcium carbonate,the main mineralized product,is significantly increased.展开更多
High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-ea...High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.展开更多
By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl ...By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl melamine (HMMM) was studied. The result shows that the rate of ring-opening polymerization is evidently dependent on the acidity of the acid and strong photo-generated acid is required. However, there is a leveling effect in the polycondensation system; if the photo-generated acid is stronger than protonated HMMM, the acidity does not obviously affect the polycondensation rate.展开更多
To address the energy shortage and meet the requirements of environmental protection policies,the feasibility of premixed fuel 1(natural gas(NG),syngas,and hydrogen)and premixed fuel 2(NG and hydrogen)in the tobacco c...To address the energy shortage and meet the requirements of environmental protection policies,the feasibility of premixed fuel 1(natural gas(NG),syngas,and hydrogen)and premixed fuel 2(NG and hydrogen)in the tobacco curing system was studied.First,according to the law of conservation of energy and mass,a tobacco leaf curing system model was established.Then,the interchangeability index of the premixed fuels was analyzed,and their volume ratios were obtained.Finally,a numerical simulation analysis of the premixed fuel combustion was conducted based on the indicators of emission,temperature,and economy.On this basis,the comprehensive performance indexes of the system composed of different premixed fuels were evaluated.The results obtained indicate that with the increase in the hydrogen volume ratio in premixed fuel 1,NO_(X) emissions will gradually increase.Moreover,with the increase in the hydrogen volume ratio in premixed fuel 2,CO emissions will gradually decrease.Because premixed fuel 2 contains more hydrogen than premixed fuel 1,CO emissions are reduced by 9.39%and 16.72%as compared with the NG system when the volume ratio of NG to hydrogen is 95∶5 and 90∶10,but the NO emissions of the latter are beyond the acceptable range.Finally,the overall performance is good when the volume ratio of NG to hydrogen is 95∶5,and the volume ratio of NG to syngas to hydrogen is 90∶5∶5.展开更多
Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hyd...Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.展开更多
An octa-functional acrylate of C-tetramethyl calix[4]resorcinarene(CMC-4-RA) was facilely synthesized and characterized with ^1H NMR, ^13C NMR and FTIR spectroscopy. The CMC-4-RA was added to a thiol-acrylate system...An octa-functional acrylate of C-tetramethyl calix[4]resorcinarene(CMC-4-RA) was facilely synthesized and characterized with ^1H NMR, ^13C NMR and FTIR spectroscopy. The CMC-4-RA was added to a thiol-acrylate system with different mass ratios, and exposed to a middle pressure mercury lamp. The maximum photopolymerization rate and final vinyl group conversion in the cured film increased greatly along with CMC-4-RA addition that was monitored with Photo-DSC. The tensile strength and pendulum hardness were improved significantly after the addition of CMC-4-RA. With increasing the content of CMC-4-RA to 60%(mass fraction), the glass transition temperature increased from 34.2 ℃ to 84.1 ℃; the cross-link density was calculated to be increased from 23.83 mmol/cm^3 to 82.40 mmol/cm^3 according to dynamic mechanical thermal analysis; the thermostability was greatly improved.展开更多
The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the i...The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.展开更多
The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synth...The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.展开更多
The influence of curing temperature on the strength development of cement-stabilized mud has been well documented in terms of strength-increase rate and ultimate strength.However,the strength development model is not ...The influence of curing temperature on the strength development of cement-stabilized mud has been well documented in terms of strength-increase rate and ultimate strength.However,the strength development model is not mature for the extremely early stages.In addition,there is a lack of studies on quality control methods based on early-stage strength development.This paper presents a strength model for cement-stabilized mud to address these gaps,considering various curing temperatures and early-stage behaviors.In this study,a series of laboratory experiments was conducted on two types of muds treated with Portland blast furnace cement and ordinary Portland cement under four different temperatures.The results indicate that elevated temperatures expedite strength development and lead to higher long-term strength.The proposed model,which combines a three-step conversion process and a hyperbolic model at the reference temperature,enables accurate estimate of the strength development for cement-treated mud with any proportions cured under various temperatures.With this model,a practical early quality control method is introduced for applying cement-stabilized mud in field projects.The back-analysis parameters obtained from a 36-h investigation at temperature of 60C demonstrated a sufficient accuracy in predicting strength levels in practical applications.展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ...Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.展开更多
Shrinkage-induced cracking is a common issue in concrete structures,where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength.In this ...Shrinkage-induced cracking is a common issue in concrete structures,where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength.In this study,the effect of ceramsite sand addition on the properties of a ternary system of cement-ground granulated blast furnace slag(GGBFS)-phosphogypsum(PG)is investigated.In particular,the fluidity,rheology,hydration heat,compressive strength,autogenous shrinkage,and drying shrinkage of the considered mortar specimens are analyzed.The results indicate that an increase in PG content leads to a decrease in fluidity,higher viscosity,lower exothermic peak,and lower compressive strength.However,the shrinkage of the mortar specimens is effectively compensated.The incorporation of internal curing water from ceramsite sand improves fluidity,decreases both yield stress and viscosity,enhances the degree of hydration,and induces mortar expansion.However,the inferior mechanical properties of the ceramsite sand generally produce a decrease in the compressive strength.展开更多
[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injecti...[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injection and vacuum tumbling curing.The effects of the two curing processes on the production rate,curing absorption rate,water content,soluble protein content,amino acid nitrogen content,texture characteristics and microstructure of the product were compared.[Results]Compared with static curing,the production rate of marinated beef increased by 10%,the curing absorption rate increased by 28%,the texture and microstructure were improved,and the water content increased,while the soluble protein content decreased.As a result,the sensory score was higher.There was no significant difference in the content of amino acid nitrogen,but it decreased compared with raw meat.To sum up,injection and vacuum tumbling curing is more conducive to the processing of marinated beef.[Conclusions]This study provides a theoretical basis for the industrial production of marinated beef,and lays a foundation for in-depth exploration of injection and vacuum tumbling curing technique of marinated beef.展开更多
By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual...By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.展开更多
This paper examines the application of polyurethane curing technology in the construction of railway track beds,with a specific focus on its implementation in China’s rapidly developing railway infrastructure.The stu...This paper examines the application of polyurethane curing technology in the construction of railway track beds,with a specific focus on its implementation in China’s rapidly developing railway infrastructure.The study begins by identifying the limitations of traditional ballasted track beds,especially under the demands of high-speed and heavyload railways.It then methodically analyzes the advantages of polyurethane-cured track beds,highlighting their improved mechanical properties,including enhanced stability and durability.The paper further explores the benefits of transitioning to prefabricated polyurethane track beds,emphasizing significant cost reductions,better construction quality,and enhanced maintainability.Through a detailed review of experimental data and practical applications,the paper demonstrates the efficacy of polyurethane track beds in various railway settings.A critical part of the research involves optimizing the structural parameters of polyurethane track beds to achieve the best balance of mechanical and damping properties.The conclusion of the paper underscores the potential of polyurethane curing technology as a transformative approach to railway track bed construction,offering a solution to the challenges posed by traditional methods and aligning with the evolving needs of modern railways.展开更多
Some people,mainly in the West,were taken by surprise when six Chinese warships were seen near the Red Sea in October 2023 amid the conflict in Gaza.Some Western media and politicians tried to frame China’s mission a...Some people,mainly in the West,were taken by surprise when six Chinese warships were seen near the Red Sea in October 2023 amid the conflict in Gaza.Some Western media and politicians tried to frame China’s mission as an escalatory move in the Middle East.展开更多
National food security is the backbone of any economy,and achieving food security is essential for the prosperity of a nation.During my study in China at the Institute of South-South Cooperation and Development,Peking...National food security is the backbone of any economy,and achieving food security is essential for the prosperity of a nation.During my study in China at the Institute of South-South Cooperation and Development,Peking University,from September 2022 to July 2023,I leant how China has managed to achieve food security despite its large population of around 1.4 billion and numerous other challenges by means of strategic planning,e"ective policy execution,technological advancement and global collaboration.展开更多
[Objective]The aim was to explore effects of curing technique parameters on chemical components and aromatic material accumulation to formulate a suitable curing technique and for and to achieve tobacco scalding, dryi...[Objective]The aim was to explore effects of curing technique parameters on chemical components and aromatic material accumulation to formulate a suitable curing technique and for and to achieve tobacco scalding, drying and giving aromat- ic flavor. [Method] With tobacco variety KRK 26 as test materials, the test involved parameters of three curing-techniques in down, middle and upper parts of flue-cured tobaccos in an oven to measure chemical components and aromatic substances in tobaccos. [Result] The effects of curing techniques on total sugar and reducing sug- ar differed upon temperature and humidity. The contents of chemical components, such as total alkaloid, total N and the ratio of sugar/ alkali by moderate temperature and high humidity technique were of significant differences with those by moderate temperature and moderate humidity technique and with low temperature and low hu- midity technique; the chemical components by moderate temperature and moderate humidity were of insignificant differences with the treatment by low temperature and low humidity technique. Total amount of aroma components by different curing tech- niques from high to low was the treatment by low temperature and low humidity technique (461.72 μg/g), the treatment by moderate temperature and moderate hu- midity technique (450.06μg/g) and the treatment by moderate temperature and high humidity technique (385.12μg/g), suggesting the content of aromatic substances is high at low temperature and low humidity. [Conclusion] Moderate temperature and high humidity curing technique has significant effects on total alkaloid, total N and the ratio of sugar/ alkali of tobaccos and different curing techniques also affect the total amount of aromatic substances of flue-cured tobaccos.展开更多
Curing of Bacillus subtilis plasmid using sodium dodecyl sulfate (SDS)was studied in order to obtain a host strain. An overnight culture of Bacillus subtilis 24/pMX45 was used to inoculate fresh LB containing SDS (0-0...Curing of Bacillus subtilis plasmid using sodium dodecyl sulfate (SDS)was studied in order to obtain a host strain. An overnight culture of Bacillus subtilis 24/pMX45 was used to inoculate fresh LB containing SDS (0-0.008%). No growth of 24/pMX45 was observed when LB contained an SDS concentration of 0.006% or greater, and the sublethal concentration (w/v) of SDS was 0.005% with a killing rate of 99%. Samples were diluted and plated on LB agar, individual colonies were randomly picked to a selective agar medium by tooth to screen for loss of plasmid-encoded erythomycin resistance. CsCl-EtBr gradient centrifugation and plasmid DNA profile demonstrated that plasmid-cured derivative A7 has completely lost its plasmid. A7 had a shorter lag, and its cell concentration was consistently higher than that of the 24/pMX45. Elimination of the plasmid was first observed after 24/pMX45 had been treated with SDS for 8 h. The percent elimination then continued to increase until about 22 h, after which the fraction of cured cell in the population remained constant. Plasmid cured cell numbers were measured in a separate control culture of 24/pMX45 untreated by SDS. No spontaneous loss of pMX45 was observed after 24/pMX45 were incubated for 24 h and 48 h with shaking at 37 ℃.These results suggested that SDS can be used as curing agent to eliminate the plasmid of Bacillus subtilis.展开更多
基金Funded by the Science and Technology Foundation of Beijing Municipal Education Commission (KM200410016004)
文摘The effects of different curing systems on the properties of high volume fine mineral powder RPC (reactive powder concrete) and the appearances of hydrates were studied. The experimental results show that dry-heating curing promotes the development of pozzolanic reactivity of fine mineral powder; due to low cement content, 0.20 water-bind ratio and high reactive fine mineral powder content, the strength of RPC increases by around 200% after steam curing and subsequent dry-heating curing. Scanning electron microscopy and energy spectrum diagram showed that: after the high volume fine mineral powder RPC with 0.16 water-bind ratio underwent steam curing and dry-heating curing, there was no significant change in the appearance of hydrates; after the RPC with 0.20 water-bind ratio, the cement content of 150 kg/m3 and more steel slag powder underwent dry-heating curing, there was a certain change in the appearance of C-S-H, the structure of gel was more compact and was uniformly distributed, and the Ca/Si of C-S-H gel decreased from 1.41 to around 1.20.
基金Funded by the National Natural Science Foundation of China(No.51972047)。
文摘The crystal structure and morphology of the mineralization products were studied by scanning electron microscopy(SEM)and X-ray diffraction(XRD),and the thermal properties were studied by thermogravimetric-differential scanning calorimetry(DSC)analysis.The changes of microorganism quantity and enzyme activity in pore solution with time were measured.The experimental results show that microorganism quantity and enzyme activity in pore solution reach the maximum at 50-60 h,mineralization curing begins at this time,the strength of microbial mineralized steel slag reaches the maximum.This study provides a good selection basis for selecting the optimum mineralization system for the production of microbial mineralized steel slag products.Bacterial mineralization can accelerate the rate of carbon sequestration in the mineralization process.The compressive strength of steel slag with 1.5% bacterial can reach up to 55.6 MPa.The microstructure and thermal properties of calcium carbonate precipitate induced by the enzymes of bacillus subtilis differs from the chemical precipitation in pore solution of steel slag.Through the analysis of the mineralized products of steel slag,the reaction rate of free calcium oxide and free magnesium oxide in steel slag after the addition of microorganisms is significantly increased,which improves the stability of steel slag as cementitious material.Meanwhile,the production of calcium carbonate,the main mineralized product,is significantly increased.
基金National Natural Science Foundations of China(Nos.51478120,U1305245)
文摘High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.
基金This project was supported by the National Natural Science Foundation of China(59633110 and 59773007)
文摘By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl melamine (HMMM) was studied. The result shows that the rate of ring-opening polymerization is evidently dependent on the acidity of the acid and strong photo-generated acid is required. However, there is a leveling effect in the polycondensation system; if the photo-generated acid is stronger than protonated HMMM, the acidity does not obviously affect the polycondensation rate.
基金National Key Research and Development Program of China(No.2019YFE0100100-08).
文摘To address the energy shortage and meet the requirements of environmental protection policies,the feasibility of premixed fuel 1(natural gas(NG),syngas,and hydrogen)and premixed fuel 2(NG and hydrogen)in the tobacco curing system was studied.First,according to the law of conservation of energy and mass,a tobacco leaf curing system model was established.Then,the interchangeability index of the premixed fuels was analyzed,and their volume ratios were obtained.Finally,a numerical simulation analysis of the premixed fuel combustion was conducted based on the indicators of emission,temperature,and economy.On this basis,the comprehensive performance indexes of the system composed of different premixed fuels were evaluated.The results obtained indicate that with the increase in the hydrogen volume ratio in premixed fuel 1,NO_(X) emissions will gradually increase.Moreover,with the increase in the hydrogen volume ratio in premixed fuel 2,CO emissions will gradually decrease.Because premixed fuel 2 contains more hydrogen than premixed fuel 1,CO emissions are reduced by 9.39%and 16.72%as compared with the NG system when the volume ratio of NG to hydrogen is 95∶5 and 90∶10,but the NO emissions of the latter are beyond the acceptable range.Finally,the overall performance is good when the volume ratio of NG to hydrogen is 95∶5,and the volume ratio of NG to syngas to hydrogen is 90∶5∶5.
基金Funded by the National Natural Science Foundation of China(Nos.51132010 and 51272222)the Programs for Science and Technology Development of Yantai City,Shandong Province,China(No.2012ZH249)
文摘Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.
基金Supported by the National Natural Science Foundation of China(No.50233030)Granted by China NKBRSF Project (No.2001CB409600)
文摘An octa-functional acrylate of C-tetramethyl calix[4]resorcinarene(CMC-4-RA) was facilely synthesized and characterized with ^1H NMR, ^13C NMR and FTIR spectroscopy. The CMC-4-RA was added to a thiol-acrylate system with different mass ratios, and exposed to a middle pressure mercury lamp. The maximum photopolymerization rate and final vinyl group conversion in the cured film increased greatly along with CMC-4-RA addition that was monitored with Photo-DSC. The tensile strength and pendulum hardness were improved significantly after the addition of CMC-4-RA. With increasing the content of CMC-4-RA to 60%(mass fraction), the glass transition temperature increased from 34.2 ℃ to 84.1 ℃; the cross-link density was calculated to be increased from 23.83 mmol/cm^3 to 82.40 mmol/cm^3 according to dynamic mechanical thermal analysis; the thermostability was greatly improved.
基金Projects(52175373,52005516)supported by the National Natural Science Foundation of ChinaProject(2018YFA0702800)supported by the National Key Basic Research Program,ChinaProject(ZZYJKT2021-03)supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China。
文摘The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.
基金supported by funding from the National Natural Science Foundation of China (Grant Nos.51978303 and 52208367)the Fundamental Research Funds for the Central Universities (Grant No.2042023kfyq03).
文摘The influence of curing temperature on the strength development of cement-stabilized mud has been well documented in terms of strength-increase rate and ultimate strength.However,the strength development model is not mature for the extremely early stages.In addition,there is a lack of studies on quality control methods based on early-stage strength development.This paper presents a strength model for cement-stabilized mud to address these gaps,considering various curing temperatures and early-stage behaviors.In this study,a series of laboratory experiments was conducted on two types of muds treated with Portland blast furnace cement and ordinary Portland cement under four different temperatures.The results indicate that elevated temperatures expedite strength development and lead to higher long-term strength.The proposed model,which combines a three-step conversion process and a hyperbolic model at the reference temperature,enables accurate estimate of the strength development for cement-treated mud with any proportions cured under various temperatures.With this model,a practical early quality control method is introduced for applying cement-stabilized mud in field projects.The back-analysis parameters obtained from a 36-h investigation at temperature of 60C demonstrated a sufficient accuracy in predicting strength levels in practical applications.
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金Funded by the National Key Research and Development Program of China (No.2019YFC1906202)the Guangxi Key Research and Development Plan (Nos.Guike AA18242007-3, Guike AB19259008, and Guike AB20297014)。
文摘Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.
基金funded by the China Railway Major Bridge Engineering Group Co.,Ltd.,Project(2023-48-Key Project).
文摘Shrinkage-induced cracking is a common issue in concrete structures,where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength.In this study,the effect of ceramsite sand addition on the properties of a ternary system of cement-ground granulated blast furnace slag(GGBFS)-phosphogypsum(PG)is investigated.In particular,the fluidity,rheology,hydration heat,compressive strength,autogenous shrinkage,and drying shrinkage of the considered mortar specimens are analyzed.The results indicate that an increase in PG content leads to a decrease in fluidity,higher viscosity,lower exothermic peak,and lower compressive strength.However,the shrinkage of the mortar specimens is effectively compensated.The incorporation of internal curing water from ceramsite sand improves fluidity,decreases both yield stress and viscosity,enhances the degree of hydration,and induces mortar expansion.However,the inferior mechanical properties of the ceramsite sand generally produce a decrease in the compressive strength.
文摘[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injection and vacuum tumbling curing.The effects of the two curing processes on the production rate,curing absorption rate,water content,soluble protein content,amino acid nitrogen content,texture characteristics and microstructure of the product were compared.[Results]Compared with static curing,the production rate of marinated beef increased by 10%,the curing absorption rate increased by 28%,the texture and microstructure were improved,and the water content increased,while the soluble protein content decreased.As a result,the sensory score was higher.There was no significant difference in the content of amino acid nitrogen,but it decreased compared with raw meat.To sum up,injection and vacuum tumbling curing is more conducive to the processing of marinated beef.[Conclusions]This study provides a theoretical basis for the industrial production of marinated beef,and lays a foundation for in-depth exploration of injection and vacuum tumbling curing technique of marinated beef.
文摘By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.
文摘This paper examines the application of polyurethane curing technology in the construction of railway track beds,with a specific focus on its implementation in China’s rapidly developing railway infrastructure.The study begins by identifying the limitations of traditional ballasted track beds,especially under the demands of high-speed and heavyload railways.It then methodically analyzes the advantages of polyurethane-cured track beds,highlighting their improved mechanical properties,including enhanced stability and durability.The paper further explores the benefits of transitioning to prefabricated polyurethane track beds,emphasizing significant cost reductions,better construction quality,and enhanced maintainability.Through a detailed review of experimental data and practical applications,the paper demonstrates the efficacy of polyurethane track beds in various railway settings.A critical part of the research involves optimizing the structural parameters of polyurethane track beds to achieve the best balance of mechanical and damping properties.The conclusion of the paper underscores the potential of polyurethane curing technology as a transformative approach to railway track bed construction,offering a solution to the challenges posed by traditional methods and aligning with the evolving needs of modern railways.
文摘Some people,mainly in the West,were taken by surprise when six Chinese warships were seen near the Red Sea in October 2023 amid the conflict in Gaza.Some Western media and politicians tried to frame China’s mission as an escalatory move in the Middle East.
文摘National food security is the backbone of any economy,and achieving food security is essential for the prosperity of a nation.During my study in China at the Institute of South-South Cooperation and Development,Peking University,from September 2022 to July 2023,I leant how China has managed to achieve food security despite its large population of around 1.4 billion and numerous other challenges by means of strategic planning,e"ective policy execution,technological advancement and global collaboration.
基金Supported by China National Tobacco Corporation General Project(〔2012〕122)Chongqing Branch Company S&T Project of China National Tobacco Corporation(NY20110601070010)~~
文摘[Objective]The aim was to explore effects of curing technique parameters on chemical components and aromatic material accumulation to formulate a suitable curing technique and for and to achieve tobacco scalding, drying and giving aromat- ic flavor. [Method] With tobacco variety KRK 26 as test materials, the test involved parameters of three curing-techniques in down, middle and upper parts of flue-cured tobaccos in an oven to measure chemical components and aromatic substances in tobaccos. [Result] The effects of curing techniques on total sugar and reducing sug- ar differed upon temperature and humidity. The contents of chemical components, such as total alkaloid, total N and the ratio of sugar/ alkali by moderate temperature and high humidity technique were of significant differences with those by moderate temperature and moderate humidity technique and with low temperature and low hu- midity technique; the chemical components by moderate temperature and moderate humidity were of insignificant differences with the treatment by low temperature and low humidity technique. Total amount of aroma components by different curing tech- niques from high to low was the treatment by low temperature and low humidity technique (461.72 μg/g), the treatment by moderate temperature and moderate hu- midity technique (450.06μg/g) and the treatment by moderate temperature and high humidity technique (385.12μg/g), suggesting the content of aromatic substances is high at low temperature and low humidity. [Conclusion] Moderate temperature and high humidity curing technique has significant effects on total alkaloid, total N and the ratio of sugar/ alkali of tobaccos and different curing techniques also affect the total amount of aromatic substances of flue-cured tobaccos.
文摘Curing of Bacillus subtilis plasmid using sodium dodecyl sulfate (SDS)was studied in order to obtain a host strain. An overnight culture of Bacillus subtilis 24/pMX45 was used to inoculate fresh LB containing SDS (0-0.008%). No growth of 24/pMX45 was observed when LB contained an SDS concentration of 0.006% or greater, and the sublethal concentration (w/v) of SDS was 0.005% with a killing rate of 99%. Samples were diluted and plated on LB agar, individual colonies were randomly picked to a selective agar medium by tooth to screen for loss of plasmid-encoded erythomycin resistance. CsCl-EtBr gradient centrifugation and plasmid DNA profile demonstrated that plasmid-cured derivative A7 has completely lost its plasmid. A7 had a shorter lag, and its cell concentration was consistently higher than that of the 24/pMX45. Elimination of the plasmid was first observed after 24/pMX45 had been treated with SDS for 8 h. The percent elimination then continued to increase until about 22 h, after which the fraction of cured cell in the population remained constant. Plasmid cured cell numbers were measured in a separate control culture of 24/pMX45 untreated by SDS. No spontaneous loss of pMX45 was observed after 24/pMX45 were incubated for 24 h and 48 h with shaking at 37 ℃.These results suggested that SDS can be used as curing agent to eliminate the plasmid of Bacillus subtilis.