A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on...This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms.展开更多
One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage ...One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.展开更多
In order to improve the thermal stability of condensed polynuclear aromatic(COPNA) resin synthesized from vacuum residue, 1,4-benzenedimethanol was added to cure COPNA resin. The curing mechanism was investigated by p...In order to improve the thermal stability of condensed polynuclear aromatic(COPNA) resin synthesized from vacuum residue, 1,4-benzenedimethanol was added to cure COPNA resin. The curing mechanism was investigated by proton nuclear magnetic resonance spectrometry, solid carbon-13 nuclear magnetic resonance spectrometry and Fourier transform infrared spectroscopy. Microstructures of the uncured and the cured COPNA resins were studied by scanning electron microscopy and X-ray diffractometry. The thermal stability of COPNA resins before and after curing was tested by thermogravimetric analysis. The element composition of the cured COPNA resin heated at different temperatures was analyzed by an element analyzer. The results showed that the uncured COPNA resin reacted with the cross-linking agent during the curing process, and the curing mechanism was confirmed to be the electrophilic substitution reaction. Compared with the uncured COPNA resin, the cured COPNA resin had a smooth surface, well-ordered and streamlined sheet structure with more crystalline solids, better molecular arrangement and orientation. The weight loss process of the uncured and cured COPNA resins was divided into three stages. Carbon residue of the cured COPNA resin was 41.65% at 600 ℃, which was much higher than 25.02% of the uncured COPNA resin, which indicated that the cured COPNA resin had higher thermal stability.展开更多
The influence of curing temperature on the strength development of cement-stabilized mud has been well documented in terms of strength-increase rate and ultimate strength.However,the strength development model is not ...The influence of curing temperature on the strength development of cement-stabilized mud has been well documented in terms of strength-increase rate and ultimate strength.However,the strength development model is not mature for the extremely early stages.In addition,there is a lack of studies on quality control methods based on early-stage strength development.This paper presents a strength model for cement-stabilized mud to address these gaps,considering various curing temperatures and early-stage behaviors.In this study,a series of laboratory experiments was conducted on two types of muds treated with Portland blast furnace cement and ordinary Portland cement under four different temperatures.The results indicate that elevated temperatures expedite strength development and lead to higher long-term strength.The proposed model,which combines a three-step conversion process and a hyperbolic model at the reference temperature,enables accurate estimate of the strength development for cement-treated mud with any proportions cured under various temperatures.With this model,a practical early quality control method is introduced for applying cement-stabilized mud in field projects.The back-analysis parameters obtained from a 36-h investigation at temperature of 60C demonstrated a sufficient accuracy in predicting strength levels in practical applications.展开更多
This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)m...This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)model,simplifying the stabilizing controller design.We implement a separate controller design and propose exponential stabilization controller and finite-time stabilization controller under finite-time disturbance observer(FTDO)for the two system inputs.In addition,we discuss the specifics of global stabilization control design.Our approach demonstrates that two system states exponentially or asymptotically converge to zero under the provided switching stabilization control strategy,while all other system states converge to zero within a finite time.展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order obs...Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.展开更多
Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an ...Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an appropriate test condition is also provided.For pre-given passivity rate and average dwell time,a set of feedback controllers is designed by use of the passivity property.展开更多
Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fr...Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fraction of agents.展开更多
Dear Editor,This letter presents a nonlinear robust controller design method for ship roll stabilization by combining the dual of Lyapunov's stability theorem with the sum of squares(SOS) technique. Varying initia...Dear Editor,This letter presents a nonlinear robust controller design method for ship roll stabilization by combining the dual of Lyapunov's stability theorem with the sum of squares(SOS) technique. Varying initial metacentric height and ship speed are regarded as uncertainties, sea waves are considered as external disturbances, and then the robust nonlinear controller is designed. Taking a container ship as an example, simulations are performed to verify the effectiveness of the proposed design scheme.展开更多
This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Li...This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.展开更多
Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a...Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.展开更多
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin...Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.展开更多
Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe ...Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe structural change by de/intercalation and diffusion of K^(+)ions with large ionic size,which results in not only much lower reversible capacity than the theoretical capacity but also poor power capability.Thus,it is important to enhance the structural stability of the layered-type TM oxides for outstanding electrochemical behaviors under the K-ion battery system.Herein,it is investigated that the substitution of the appropriate Ti^(4+)contents enables a highly enlarged reversible capacity of P3-type KxCrO_(2) using combined studies of first-principles calculation and various experiments.Whereas the pristine P3-type KxCrO_(2) just exhibits the reversible capacity of∼120 mAh g^(−1) in the voltage range of 1.5-4.0 V(vs.K^(+)/K),the∼0.61 mol K^(+)corresponding to∼150 mAh g^(−1) can be reversible de/intercalated at the structure of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) under the same conditions.Furthermore,even at the high current density of 788 mA g^(−1),the specific capacity of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) is∼120 mAh g^(−1),which is∼81 times larger than that of the pristine P3-type KxCrO_(2).It is believed that this research can provide an effective strategy to improve the electrochemical performances of the cathode materials suffered by severe structural change that occurred during charge/discharge under not only K-ion battery system but also other rechargeable battery systems.展开更多
Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredg...Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredged sediment(CDS)with high water content is still unknown.In this study,guar gum(GG)and xanthan gum(XG)were adopted as typical biopolymers,and a series of unconfined compressive strength(UCS),splitting tensile strength(STS)and scanning electron microscopy(SEM)tests were performed to evaluate the mechanical and microstructural properties of XG-and GG-modified CDSs considering several factors including biopolymer modification,binderesoil ratio and wateresolid ratio.Furthermore,the micro-mechanisms revealing the evolutions of mechanical properties of biopolymermodified CDS were analyzed.The results indicate that the addition of XG can effectively improve the strength of CDS,while the GG has a side effect.The XG content of 9%was recommended,which can improve the 7 d-and 28 d-UCSs by 196%and 51.8%,together with the 7 d-and 28 d-STSs by 118.3%and 42.2%,respectively.Increasing the binderesoil ratio or decreasing the wateresolid ratio significantly improved the strength gaining but aggravated the brittleness characteristics of CDS.Adding XG to CDS contributed to the formation of microstructure with more compactness and higher cementation degrees of ordinary Portland cement(OPC)-XG-stabilized DS(CXDS).The micro-mechanism models revealing the interactions of multiple media including OPC cementation,biopolymer film bonding and bridging effects inside CXDS were proposed.The key findings confirm the feasibility of XG modification as a green and high-efficiency mean for improving the mechanical properties of CDS.展开更多
The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tail...The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies.展开更多
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar...In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
基金supported by an Australian Government Research Training Program(RTP)scholarship.
文摘This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51408159)the China Postdoctoral Science Foundation of China(Grant No.2013T60375 and 2012M520744)
文摘One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.
基金supported by the National Natural Science Foundation of China(51172285 and 51372277)the Fundamental Research Funds for the Central Universities(14CX02060A,15CX02084A)the Natural Science Foundation of Shandong Province(ZR2011EL030)
文摘In order to improve the thermal stability of condensed polynuclear aromatic(COPNA) resin synthesized from vacuum residue, 1,4-benzenedimethanol was added to cure COPNA resin. The curing mechanism was investigated by proton nuclear magnetic resonance spectrometry, solid carbon-13 nuclear magnetic resonance spectrometry and Fourier transform infrared spectroscopy. Microstructures of the uncured and the cured COPNA resins were studied by scanning electron microscopy and X-ray diffractometry. The thermal stability of COPNA resins before and after curing was tested by thermogravimetric analysis. The element composition of the cured COPNA resin heated at different temperatures was analyzed by an element analyzer. The results showed that the uncured COPNA resin reacted with the cross-linking agent during the curing process, and the curing mechanism was confirmed to be the electrophilic substitution reaction. Compared with the uncured COPNA resin, the cured COPNA resin had a smooth surface, well-ordered and streamlined sheet structure with more crystalline solids, better molecular arrangement and orientation. The weight loss process of the uncured and cured COPNA resins was divided into three stages. Carbon residue of the cured COPNA resin was 41.65% at 600 ℃, which was much higher than 25.02% of the uncured COPNA resin, which indicated that the cured COPNA resin had higher thermal stability.
基金supported by funding from the National Natural Science Foundation of China (Grant Nos.51978303 and 52208367)the Fundamental Research Funds for the Central Universities (Grant No.2042023kfyq03).
文摘The influence of curing temperature on the strength development of cement-stabilized mud has been well documented in terms of strength-increase rate and ultimate strength.However,the strength development model is not mature for the extremely early stages.In addition,there is a lack of studies on quality control methods based on early-stage strength development.This paper presents a strength model for cement-stabilized mud to address these gaps,considering various curing temperatures and early-stage behaviors.In this study,a series of laboratory experiments was conducted on two types of muds treated with Portland blast furnace cement and ordinary Portland cement under four different temperatures.The results indicate that elevated temperatures expedite strength development and lead to higher long-term strength.The proposed model,which combines a three-step conversion process and a hyperbolic model at the reference temperature,enables accurate estimate of the strength development for cement-treated mud with any proportions cured under various temperatures.With this model,a practical early quality control method is introduced for applying cement-stabilized mud in field projects.The back-analysis parameters obtained from a 36-h investigation at temperature of 60C demonstrated a sufficient accuracy in predicting strength levels in practical applications.
基金partially supported by the National Natural Science Foundation of China(62173207,62073187)the Science Center Program of the National Natural Science Foundation of China(62188101)+1 种基金the China Postdoctoral Science Special Foundation(2023T160334)the Youth Innovation Team Project of Colleges and Universities in Shandong Province(2022KJ176)。
文摘This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)model,simplifying the stabilizing controller design.We implement a separate controller design and propose exponential stabilization controller and finite-time stabilization controller under finite-time disturbance observer(FTDO)for the two system inputs.In addition,we discuss the specifics of global stabilization control design.Our approach demonstrates that two system states exponentially or asymptotically converge to zero under the provided switching stabilization control strategy,while all other system states converge to zero within a finite time.
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
基金supported by the National Natural Science Foundation of China(62103175)Taishan Scholar Project of Shandong Province of China。
文摘Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.
基金supported by the National Natural Science Foundation of China(U23A20324,62201510)the 111 Project(B16009)+1 种基金the Henan Provincial Department of Science and Technology Research Project(212102310299)the Open Foundation of Henan Key Laboratory of General Aviation Technology(ZHKF-230206)。
文摘Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an appropriate test condition is also provided.For pre-given passivity rate and average dwell time,a set of feedback controllers is designed by use of the passivity property.
基金supported by the National Key Research and Development Project of China(2020YFA0714301)the National Natural Science Foundation of China(61833005)。
文摘Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fraction of agents.
基金supported by the National Natural Science Foundation of Jiangsu Province (BK20231112)。
文摘Dear Editor,This letter presents a nonlinear robust controller design method for ship roll stabilization by combining the dual of Lyapunov's stability theorem with the sum of squares(SOS) technique. Varying initial metacentric height and ship speed are regarded as uncertainties, sea waves are considered as external disturbances, and then the robust nonlinear controller is designed. Taking a container ship as an example, simulations are performed to verify the effectiveness of the proposed design scheme.
基金National Natural Science Foundation of China under Grants 62203338,61936004,61821003,62173259 and 62176192Postdoctoral Science Foundation of China under Grant 2022M722485.
文摘This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.
基金Funded by the National Natural Science Foundation of China(Nos.52074245,52374416 and 52202029)the China Postdoctoral Science Foundation(No.2022M721058)。
文摘Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.
基金the National Natural Science Foundation of China(No.52275062)and(No.52075262).
文摘Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.
基金Korea Institute of Materials Science,Grant/Award Number:PNK9370National Research Foundation of Korea,Grant/Award Numbers:NRF-2021R1A2C1014280,NRF-2022R1C1C1011058,NRF-2022M3H446401037201Korea Institute of Science and Technology,Grant/Award Number:2E32581-23-092。
文摘Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe structural change by de/intercalation and diffusion of K^(+)ions with large ionic size,which results in not only much lower reversible capacity than the theoretical capacity but also poor power capability.Thus,it is important to enhance the structural stability of the layered-type TM oxides for outstanding electrochemical behaviors under the K-ion battery system.Herein,it is investigated that the substitution of the appropriate Ti^(4+)contents enables a highly enlarged reversible capacity of P3-type KxCrO_(2) using combined studies of first-principles calculation and various experiments.Whereas the pristine P3-type KxCrO_(2) just exhibits the reversible capacity of∼120 mAh g^(−1) in the voltage range of 1.5-4.0 V(vs.K^(+)/K),the∼0.61 mol K^(+)corresponding to∼150 mAh g^(−1) can be reversible de/intercalated at the structure of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) under the same conditions.Furthermore,even at the high current density of 788 mA g^(−1),the specific capacity of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) is∼120 mAh g^(−1),which is∼81 times larger than that of the pristine P3-type KxCrO_(2).It is believed that this research can provide an effective strategy to improve the electrochemical performances of the cathode materials suffered by severe structural change that occurred during charge/discharge under not only K-ion battery system but also other rechargeable battery systems.
基金supported by the National Key R&D Program of China(Grant No.2020YFC1908703)Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51861165104)China Postdoctoral Science Foundation(Grant No.2022M723347).
文摘Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredged sediment(CDS)with high water content is still unknown.In this study,guar gum(GG)and xanthan gum(XG)were adopted as typical biopolymers,and a series of unconfined compressive strength(UCS),splitting tensile strength(STS)and scanning electron microscopy(SEM)tests were performed to evaluate the mechanical and microstructural properties of XG-and GG-modified CDSs considering several factors including biopolymer modification,binderesoil ratio and wateresolid ratio.Furthermore,the micro-mechanisms revealing the evolutions of mechanical properties of biopolymermodified CDS were analyzed.The results indicate that the addition of XG can effectively improve the strength of CDS,while the GG has a side effect.The XG content of 9%was recommended,which can improve the 7 d-and 28 d-UCSs by 196%and 51.8%,together with the 7 d-and 28 d-STSs by 118.3%and 42.2%,respectively.Increasing the binderesoil ratio or decreasing the wateresolid ratio significantly improved the strength gaining but aggravated the brittleness characteristics of CDS.Adding XG to CDS contributed to the formation of microstructure with more compactness and higher cementation degrees of ordinary Portland cement(OPC)-XG-stabilized DS(CXDS).The micro-mechanism models revealing the interactions of multiple media including OPC cementation,biopolymer film bonding and bridging effects inside CXDS were proposed.The key findings confirm the feasibility of XG modification as a green and high-efficiency mean for improving the mechanical properties of CDS.
基金supported by the High-Level Talent Training Program in Guizhou Province(GCC[2023]045)the Guizhou Talent Base Project[RCJD2018-21]。
文摘The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies.
基金supported by the National Natural Science Foundation of China (62073015,62173036,62122014)。
文摘In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.