This paper presents a novel scheme for enhancing resistance that utilizes an equivalent negative resistance. Adopting this novel scheme in the proposed current source could remarkably boost its output resistance witho...This paper presents a novel scheme for enhancing resistance that utilizes an equivalent negative resistance. Adopting this novel scheme in the proposed current source could remarkably boost its output resistance without requiring increased power supply. Simulation with 0.6μm CMOS process models shows that the output resistance of the novel current source can reach the order of 10^9Ω with a 1.04GHz bandwidth and only 10.6ppm/℃ in the range of -40~145℃.展开更多
A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequenc...A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.展开更多
The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor a...The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.展开更多
Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used t...Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.展开更多
The Howland current source (HCS) circuit is commonly used, e.g. in electrical impedance tomography (EIT) sys tems. It is important to optimise the design parameters, such as the output impedance, bandwidth, curren...The Howland current source (HCS) circuit is commonly used, e.g. in electrical impedance tomography (EIT) sys tems. It is important to optimise the design parameters, such as the output impedance, bandwidth, current stability and load range. While many people have used this circuit, it has not been systematically analysed. In this paper, a numerical method is proposed to analyse the characteristics of HCS. Based on a nonideal opamp model, general formulas and simplified for mulas for calculating the output impedance and the closeloop gain of HCS are deduced. From these formulas, the practical formulas are chosen and their effectiveness has been proven by analysis and experiment. The output impendence of two HCS circuits based on t^A741 and LM6365 are compared. The magnitudefrequency response and the relationship between the cur rent and the load of HCS are discussed.展开更多
China is abundant in iron-ore resources, with proven ore reserves of 576.62×10^8 t and proven reserves of 210×10^8 t, containing an average iron content of 33%. However, the rich iron-ore reserves of 10.85...China is abundant in iron-ore resources, with proven ore reserves of 576.62×10^8 t and proven reserves of 210×10^8 t, containing an average iron content of 33%. However, the rich iron-ore reserves of 10.85×10^8 t only account for 1.9% of all proven reserves. China's iron-ore resources are characterized by many lean ores and a few rich ones.展开更多
Characteristics and evolution of the Kuroshio frontal eddies and warm filaments are analyzed according to two series of satellite images (March 5 to 7, 1986 and April 14 to 16, 1988). The results show that the frontal...Characteristics and evolution of the Kuroshio frontal eddies and warm filaments are analyzed according to two series of satellite images (March 5 to 7, 1986 and April 14 to 16, 1988). The results show that the frontal eddies in the East China Sea are generated at the shelf break and move along the continental slope at a speed of 15 cm/s with the Kuroshio. The frontal eddies occur about every 10 d and evolve to be warm filaments a few hundred km in length and 30-40 km in width in the area west of the Yaku-shima. Meanwhile, the existence of the warm filament was also found in the area by analysing the hydrographic data in the area west of Kyushu during May 24-June 5, 1988.The Kuroshio warm filaments move westward opposite to the Kuroshio and then turn northward at the shelf break and become the main source of the warm water of the Tsushima Warm Current. A simple dynamic explanation for the process is presented in this paper.展开更多
In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched v...In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.展开更多
A new modified Angelov current–voltage characteristic model equation is proposed to improve the drain–source current(Ids) simulation of an Al Ga N/Ga N-based(gallium nitride) high electron mobility transistor(A...A new modified Angelov current–voltage characteristic model equation is proposed to improve the drain–source current(Ids) simulation of an Al Ga N/Ga N-based(gallium nitride) high electron mobility transistor(Al Ga N/Ga N-based HEMT) at high power operation. Since an accurate radio frequency(RF) current simulation is critical for a correct power simulation of the device, in this paper we propose a method of Al Ga N/Ga N high electron mobility transistor(HEMT)nonlinear large-signal model extraction with a supplemental modeling of RF drain–source current as a function of RF input power. The improved results of simulated output power, gain, and power added efficiency(PAE) at class-AB quiescent bias of Vgs =-3.5 V, Vds= 30 V with a frequency of 9.6 GHz are presented.展开更多
Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinementfusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheatin...Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinementfusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI(PCI e Xtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module,the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and overcurrent protection system has the advantages of setting forbidden time and isolation transmission.展开更多
The paper proposes a Current Source Multilevel Inverter (CSMLI) with single rating inductor topology. Multilevel inverters are most familiar with power converter’s applications due to reduced dv/dt, di/dt stress, and...The paper proposes a Current Source Multilevel Inverter (CSMLI) with single rating inductor topology. Multilevel inverters are most familiar with power converter’s applications due to reduced dv/dt, di/dt stress, and very efficient for reducing harmonic distortion in the output voltage and output current. The proposed nine-level current source inverter has been tested under symmetrical and asymmetrical modes of operation, and their activities are compared using PI and Fuzzy PI (Proportional Integral) controllers with multicarrier PWM (Pulse Width Modulation) strategy. MATLAB/Simulink simulation has been made for the proposed converter to obtain its performance measures. Some experimental results are given to verify the presented Current Source Multilevel Inverter.展开更多
On the basis of the hydrographic data in the area west of Kyushu from four cruises of R/V Xiangyanghong No. 9 from 1987 to 1988 , the circulation features in the investigation area are described and the source of the ...On the basis of the hydrographic data in the area west of Kyushu from four cruises of R/V Xiangyanghong No. 9 from 1987 to 1988 , the circulation features in the investigation area are described and the source of the Tsushima Warm Current water (TWCW) is explored by using the observed and geostrophic current results and tracking the Kuroshio Subsurface High Salinity Core (KSHSC).展开更多
In this paper, a new predictive control strategy for current source matrix converter (CSMC) is presented. Proposed predictive control strategy allows for creating output voltages with boost type voltage transfer ratio...In this paper, a new predictive control strategy for current source matrix converter (CSMC) is presented. Proposed predictive control strategy allows for creating output voltages with boost type voltage transfer ratio and desired frequency. The description of predictive control circuit of the CSMC is presented. Furthermore the simulation test results to confirm functionality of the proposed control strategy and converter properties under this strategy are shown.展开更多
A hot cathode bucket ion source is used for the EAST(experimental advanced superconducting tokamak)neutral beam injector.The thermal electrons emitted from the surface of the cathode are extracted and accelerated by...A hot cathode bucket ion source is used for the EAST(experimental advanced superconducting tokamak)neutral beam injector.The thermal electrons emitted from the surface of the cathode are extracted and accelerated by the electric field formed by the arc voltage,which is applied between the arc chamber of the ion source and the cathode.This paper analyzes the effects of arc voltage on the arc discharge in a hot cathode high current ion source.展开更多
the system to DC voltage source as the core, AT89C52 MCU as the main controller, the output voltage to set the DC power supply through the keyboard, with a step function voltage to reality, the actual output value. Th...the system to DC voltage source as the core, AT89C52 MCU as the main controller, the output voltage to set the DC power supply through the keyboard, with a step function voltage to reality, the actual output value. This design is divided into four modules: SCM control and display module, digital to analog (D/A) conversion module, a constant voltage source module, output module. MCU control module as the core, the input signal is converted to digital quantity output; constant current source module voltage D/A conversion to analog conversion into constant pressure through a constant voltage circuit. The system has good reliability, high precision.展开更多
This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect m...This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.展开更多
Because of its controlled power factor and no commutation failure,current source converter(CSC)made up of reverse-blocking IGCTs(RB-IGCTs)offers broad application prospects in the field of HVDC system.Valve voltage an...Because of its controlled power factor and no commutation failure,current source converter(CSC)made up of reverse-blocking IGCTs(RB-IGCTs)offers broad application prospects in the field of HVDC system.Valve voltage and power operating range as the most important operating characteristics should be paid attention to but they are always contradictory.First,the relationship between valve voltage and modulation index is obtained.In particular,valve voltage of converter under the three typical modulation methods is compared,analyzed,and verified.Second,with the help of the independent control strategy and coordinated control strategy of both ends,power operating ranges of the three modulation methods are comprehensively analyzed and compared.Third,in order to solve power coupling at a low active power,the improved coordination control strategy at both ends in this paper is proposed and the relationships among active power,reactive power,DC current and phase angle difference are given in detail.Finally,a 500 kV/3 kA simulation system was built in PSCAD/EMTDC to obtain comparison results of the key operating characteristics of CSC under different modulation methods and the converter can realize unity power operation under random active power after adopting the improved coordinated control strategy,and DC current does not decrease to zero,verifying effectiveness of the coordinated control strategy.展开更多
Purpose The high energy photon source(HEPS)is the fourth-generation synchrotron photon source.Compared with the third-generation synchrotron photon source,the brightness is 100-1000 times higher,and the electron emitt...Purpose The high energy photon source(HEPS)is the fourth-generation synchrotron photon source.Compared with the third-generation synchrotron photon source,the brightness is 100-1000 times higher,and the electron emittance of the storage ring is low to the diffraction limit of light.Through physical calculations,it is required that the stability of the storage ring quadrupole magnet power supply be better than 10 ppm,and the accuracy of output current be better than 80 ppm.This high demand for technical parameter poses a challenge to the development of high precision and stability power supplies.Methods The main circuit topology of the power supply adopts a phase-shifted full bridge soft switching scheme,which avoids interference caused by switching noise and improves power stability and efficiency.The high-precision digital power supply controller based on FPGA improves the sampling speed and control accuracy of the power supply,and the constant temperature control circuit ensures that the output current of the power supply meets the requirements of HEPS for power supply performance.Results In the batch testing section,a testing facility was built to test the stability,accuracy,repeatability,voltage ripple,and other parameter of high precision and stability power supplies.After a year and a half of testing,the performance tests of 1066 power supplies,including linear accelerators power supplies,booster power supplies,storage rings power supplies,dipole and quadrupole combined power supplies,dipole and quadrupole power supplies,were completed.The results all met and exceeded the design specifications.Conclusions The HEPS high precision and stability power supply meets the design requirements in terms of current stability,accuracy,repeatability,voltage ripple,and other aspects.The batch test results show that the power supply performance using the full bridge phase shifting soft switching technology combined with high-precision digital controller scheme is excellent,and the power supply consistency is good,providing a guarantee for the successful operation of HEPS in the future.展开更多
A CMOS bandgap reference (BGR) without a resistor,with a high power supply rejection ratio and output be- low 1V is proposed. The circuit is suited for on-chip voltage down converters. The BGR is designed and fabric...A CMOS bandgap reference (BGR) without a resistor,with a high power supply rejection ratio and output be- low 1V is proposed. The circuit is suited for on-chip voltage down converters. The BGR is designed and fabricated using an HUTC 0.18μm CMOS process. The silicon area is only 0. 031mm^2 excluding pads and electrostatic-discharge (ESD) protec- tion circuits. Experimental results show that the PSRR of the proposed BGR at 100Hz and lkHz achieves, respectively, - 70 and 62dB using the pre-regulator. The proposed BGR circuit generates an output voltage of 0. 5582V with a varia- tion of 1.5mV in a temperature range from 0 to 85℃. The deviation of the output voltage is within 2mV when the power supply voltage VDD changes from 2.4 to 4V.展开更多
A fully integrated 3GHz low-power and low-phase-noise voltage-controlled oscillator (VCO) with a self-biasing current source was implemented in a standard 0.18μm CMOS process. A trade-off between noise and power wa...A fully integrated 3GHz low-power and low-phase-noise voltage-controlled oscillator (VCO) with a self-biasing current source was implemented in a standard 0.18μm CMOS process. A trade-off between noise and power was realized through the optimization of the improved current source. The VCO can be tuned from 2.83 to 3.25GHz with a 13.8% tuning range. The measured phase noise at 1MHz offset is -111dBc/Hz at a frequency of 3.22GHz while the core circuit draws less than 2mA from a 1.8V supply voltage. These results make the circuit suitable for a 5GHz wireless local area network (WLAN) receiver and 3.4 to 3.6GHz world interoperability for microwave access (WiMAX) application.展开更多
文摘This paper presents a novel scheme for enhancing resistance that utilizes an equivalent negative resistance. Adopting this novel scheme in the proposed current source could remarkably boost its output resistance without requiring increased power supply. Simulation with 0.6μm CMOS process models shows that the output resistance of the novel current source can reach the order of 10^9Ω with a 1.04GHz bandwidth and only 10.6ppm/℃ in the range of -40~145℃.
文摘A novel current-source active power filter (APF) based on multi-modular converter with carrier phase-shifted SPWM (CPS-SPWM) technique is proposed. With this technique, the effect of equivalent high switching frequency con-verter is obtained with low switching frequency converter. It is very promising in current-source APF that adopt super-conducting magnetic energy storage component.
基金supported in part by the Jiangsu Natural Science Foundation of China under Grant BK20180013in part by the Shenzhen Science and Technology Innovation Committee(STIC)under Grant JCYJ20180306174439784.
文摘The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.
文摘Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.
文摘The Howland current source (HCS) circuit is commonly used, e.g. in electrical impedance tomography (EIT) sys tems. It is important to optimise the design parameters, such as the output impedance, bandwidth, current stability and load range. While many people have used this circuit, it has not been systematically analysed. In this paper, a numerical method is proposed to analyse the characteristics of HCS. Based on a nonideal opamp model, general formulas and simplified for mulas for calculating the output impedance and the closeloop gain of HCS are deduced. From these formulas, the practical formulas are chosen and their effectiveness has been proven by analysis and experiment. The output impendence of two HCS circuits based on t^A741 and LM6365 are compared. The magnitudefrequency response and the relationship between the cur rent and the load of HCS are discussed.
文摘China is abundant in iron-ore resources, with proven ore reserves of 576.62×10^8 t and proven reserves of 210×10^8 t, containing an average iron content of 33%. However, the rich iron-ore reserves of 10.85×10^8 t only account for 1.9% of all proven reserves. China's iron-ore resources are characterized by many lean ores and a few rich ones.
文摘Characteristics and evolution of the Kuroshio frontal eddies and warm filaments are analyzed according to two series of satellite images (March 5 to 7, 1986 and April 14 to 16, 1988). The results show that the frontal eddies in the East China Sea are generated at the shelf break and move along the continental slope at a speed of 15 cm/s with the Kuroshio. The frontal eddies occur about every 10 d and evolve to be warm filaments a few hundred km in length and 30-40 km in width in the area west of the Yaku-shima. Meanwhile, the existence of the warm filament was also found in the area by analysing the hydrographic data in the area west of Kyushu during May 24-June 5, 1988.The Kuroshio warm filaments move westward opposite to the Kuroshio and then turn northward at the shelf break and become the main source of the warm water of the Tsushima Warm Current. A simple dynamic explanation for the process is presented in this paper.
文摘In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61204086)
文摘A new modified Angelov current–voltage characteristic model equation is proposed to improve the drain–source current(Ids) simulation of an Al Ga N/Ga N-based(gallium nitride) high electron mobility transistor(Al Ga N/Ga N-based HEMT) at high power operation. Since an accurate radio frequency(RF) current simulation is critical for a correct power simulation of the device, in this paper we propose a method of Al Ga N/Ga N high electron mobility transistor(HEMT)nonlinear large-signal model extraction with a supplemental modeling of RF drain–source current as a function of RF input power. The improved results of simulated output power, gain, and power added efficiency(PAE) at class-AB quiescent bias of Vgs =-3.5 V, Vds= 30 V with a frequency of 9.6 GHz are presented.
基金supported by National Natural Science Foundation of China(No.11575240)Key Program of Research and Development of Hefei Science Center,CAS(grant 2016HSC-KPRD002)
文摘Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinementfusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI(PCI e Xtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module,the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and overcurrent protection system has the advantages of setting forbidden time and isolation transmission.
文摘The paper proposes a Current Source Multilevel Inverter (CSMLI) with single rating inductor topology. Multilevel inverters are most familiar with power converter’s applications due to reduced dv/dt, di/dt stress, and very efficient for reducing harmonic distortion in the output voltage and output current. The proposed nine-level current source inverter has been tested under symmetrical and asymmetrical modes of operation, and their activities are compared using PI and Fuzzy PI (Proportional Integral) controllers with multicarrier PWM (Pulse Width Modulation) strategy. MATLAB/Simulink simulation has been made for the proposed converter to obtain its performance measures. Some experimental results are given to verify the presented Current Source Multilevel Inverter.
文摘On the basis of the hydrographic data in the area west of Kyushu from four cruises of R/V Xiangyanghong No. 9 from 1987 to 1988 , the circulation features in the investigation area are described and the source of the Tsushima Warm Current water (TWCW) is explored by using the observed and geostrophic current results and tracking the Kuroshio Subsurface High Salinity Core (KSHSC).
文摘In this paper, a new predictive control strategy for current source matrix converter (CSMC) is presented. Proposed predictive control strategy allows for creating output voltages with boost type voltage transfer ratio and desired frequency. The description of predictive control circuit of the CSMC is presented. Furthermore the simulation test results to confirm functionality of the proposed control strategy and converter properties under this strategy are shown.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB101000)National Natural Science Foundation of China(No.11405207)
文摘A hot cathode bucket ion source is used for the EAST(experimental advanced superconducting tokamak)neutral beam injector.The thermal electrons emitted from the surface of the cathode are extracted and accelerated by the electric field formed by the arc voltage,which is applied between the arc chamber of the ion source and the cathode.This paper analyzes the effects of arc voltage on the arc discharge in a hot cathode high current ion source.
文摘the system to DC voltage source as the core, AT89C52 MCU as the main controller, the output voltage to set the DC power supply through the keyboard, with a step function voltage to reality, the actual output value. This design is divided into four modules: SCM control and display module, digital to analog (D/A) conversion module, a constant voltage source module, output module. MCU control module as the core, the input signal is converted to digital quantity output; constant current source module voltage D/A conversion to analog conversion into constant pressure through a constant voltage circuit. The system has good reliability, high precision.
文摘This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.
基金supported in part by Science and Technology Project of State Grid Corporation of China.(5500202058059A0000).
文摘Because of its controlled power factor and no commutation failure,current source converter(CSC)made up of reverse-blocking IGCTs(RB-IGCTs)offers broad application prospects in the field of HVDC system.Valve voltage and power operating range as the most important operating characteristics should be paid attention to but they are always contradictory.First,the relationship between valve voltage and modulation index is obtained.In particular,valve voltage of converter under the three typical modulation methods is compared,analyzed,and verified.Second,with the help of the independent control strategy and coordinated control strategy of both ends,power operating ranges of the three modulation methods are comprehensively analyzed and compared.Third,in order to solve power coupling at a low active power,the improved coordination control strategy at both ends in this paper is proposed and the relationships among active power,reactive power,DC current and phase angle difference are given in detail.Finally,a 500 kV/3 kA simulation system was built in PSCAD/EMTDC to obtain comparison results of the key operating characteristics of CSC under different modulation methods and the converter can realize unity power operation under random active power after adopting the improved coordinated control strategy,and DC current does not decrease to zero,verifying effectiveness of the coordinated control strategy.
文摘Purpose The high energy photon source(HEPS)is the fourth-generation synchrotron photon source.Compared with the third-generation synchrotron photon source,the brightness is 100-1000 times higher,and the electron emittance of the storage ring is low to the diffraction limit of light.Through physical calculations,it is required that the stability of the storage ring quadrupole magnet power supply be better than 10 ppm,and the accuracy of output current be better than 80 ppm.This high demand for technical parameter poses a challenge to the development of high precision and stability power supplies.Methods The main circuit topology of the power supply adopts a phase-shifted full bridge soft switching scheme,which avoids interference caused by switching noise and improves power stability and efficiency.The high-precision digital power supply controller based on FPGA improves the sampling speed and control accuracy of the power supply,and the constant temperature control circuit ensures that the output current of the power supply meets the requirements of HEPS for power supply performance.Results In the batch testing section,a testing facility was built to test the stability,accuracy,repeatability,voltage ripple,and other parameter of high precision and stability power supplies.After a year and a half of testing,the performance tests of 1066 power supplies,including linear accelerators power supplies,booster power supplies,storage rings power supplies,dipole and quadrupole combined power supplies,dipole and quadrupole power supplies,were completed.The results all met and exceeded the design specifications.Conclusions The HEPS high precision and stability power supply meets the design requirements in terms of current stability,accuracy,repeatability,voltage ripple,and other aspects.The batch test results show that the power supply performance using the full bridge phase shifting soft switching technology combined with high-precision digital controller scheme is excellent,and the power supply consistency is good,providing a guarantee for the successful operation of HEPS in the future.
文摘A CMOS bandgap reference (BGR) without a resistor,with a high power supply rejection ratio and output be- low 1V is proposed. The circuit is suited for on-chip voltage down converters. The BGR is designed and fabricated using an HUTC 0.18μm CMOS process. The silicon area is only 0. 031mm^2 excluding pads and electrostatic-discharge (ESD) protec- tion circuits. Experimental results show that the PSRR of the proposed BGR at 100Hz and lkHz achieves, respectively, - 70 and 62dB using the pre-regulator. The proposed BGR circuit generates an output voltage of 0. 5582V with a varia- tion of 1.5mV in a temperature range from 0 to 85℃. The deviation of the output voltage is within 2mV when the power supply voltage VDD changes from 2.4 to 4V.
基金the National Natural Science Foundation of China(No.60276021)the State Key Development Program for Basic Research of China(No.G2002CB311901)~~
文摘A fully integrated 3GHz low-power and low-phase-noise voltage-controlled oscillator (VCO) with a self-biasing current source was implemented in a standard 0.18μm CMOS process. A trade-off between noise and power was realized through the optimization of the improved current source. The VCO can be tuned from 2.83 to 3.25GHz with a 13.8% tuning range. The measured phase noise at 1MHz offset is -111dBc/Hz at a frequency of 3.22GHz while the core circuit draws less than 2mA from a 1.8V supply voltage. These results make the circuit suitable for a 5GHz wireless local area network (WLAN) receiver and 3.4 to 3.6GHz world interoperability for microwave access (WiMAX) application.