For actively modulated In-line Sagnac interferential all optic fiber current transformers (AOFCTs), the accuracies are directly affected by the amplitude of the modulation signal. In order to deeply undertand the func...For actively modulated In-line Sagnac interferential all optic fiber current transformers (AOFCTs), the accuracies are directly affected by the amplitude of the modulation signal. In order to deeply undertand the function of the modulator, a theoretical model of modulation effect to AOFCTs is built up in this paper. The effect of the amplitude of the modulation signal to the output intensity of AOFCTs is theoretically formulated and numerical calculated. The results show that the modulation voltage variation could affect the output accuracies significantly. This might be some references on the investigation for practical applications of AOFCTs.展开更多
The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are ...The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are complex,the edges are blurred,and the sample numbers are unbalanced.To solve these problems,this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model(MCIF-Transformer Mask RCNN)for PET/CT lung tumor instance segmentation,The main innovative works of this paper are as follows:Firstly,the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images.The pixel dependence relationship is established in local and non-local fields to improve the model perception ability.Secondly,the Cross-scale Interactive Feature Enhancement auxiliary network is designed to provide the shallow features to the deep features,and the cross-scale interactive feature enhancement module(CIFEM)is used to enhance the attention ability of the fine-grained features.Thirdly,the Cross-scale Interactive Feature fusion FPN network(CIF-FPN)is constructed to realize bidirectional interactive fusion between deep features and shallow features,and the low-level features are enhanced in deep semantic features.Finally,4 ablation experiments,3 comparison experiments of detection,3 comparison experiments of segmentation and 6 comparison experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical image datasets.The results showed that APdet,APseg,ARdet and ARseg indexes are improved by 5.5%,5.15%,3.11%and 6.79%compared with Mask RCNN(resnet50).Based on the above research,the precise detection and segmentation of the lesion region are realized in this paper.This method has positive significance for the detection of lung tumors.展开更多
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p...The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome prediction.Motivated by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical images.Specifically,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution.The primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and transformers.Our proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer models.The models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and SegRap2023.Performance was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation accuracy.For instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model configurations.The 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the 2D model,although effective,generally underperformed compared to its 2.5D and 3D counterparts.Compared to related literature,our study confirms the advantages of incorporating additional spatial context,as seen in the improved performance of the 2.5D model.This research fills a significant gap by providing a detailed comparative analysis of different model dimensions and their impact on H&N segmentation accuracy in dual PET/CT imaging.展开更多
Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de...Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.展开更多
In this article,a new type current transformer was developed using an active-passive circuit to improve low frequency response of the system without impairing high frequency response.The active-passive current transfo...In this article,a new type current transformer was developed using an active-passive circuit to improve low frequency response of the system without impairing high frequency response.The active-passive current transformer with In-flange was fabricated.Theoretical analysis,numerical simulations and experimental results are given.展开更多
This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency c...This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency characteristics and transient characteristics of Rogowski transducer and Rogowski-coil Current Transformer are deeply analyzed based on the physical structure of the transformer.?It is revealed that broad bandwidth of the transformer can improve the performance of protective relaying, and the bandwidth is determined mainly by the parameters of the Rogowski transducer and signal processing circuits. It is also discovered that the measurement errors of transient current mainly depend on the abilities for the current transformer to reproduce an accurate replica of the decaying dc components, which is mainly decided by the decay time constant of the aperiodic component of transient current and the parameters of the integral unit. Finally, some measures are proposed for the performance improvement of Rogowski-coil Current Transformer to meet the requirements of protective relaying system in terms of structural design and testing standards.展开更多
This paper describes a prototype power delivery system developed for high voltage electronic current transformer (ECT) that uses laser light to transfer power to and communicates with the primary converter. The desi...This paper describes a prototype power delivery system developed for high voltage electronic current transformer (ECT) that uses laser light to transfer power to and communicates with the primary converter. The design is based on optical-to-electrical power converters, solid-state diode lasers and optical fibers. Command signals are transmitted via the same up-fiber used to send power from secondary power supply to primary converter. The upward data transmission is completed during the brief interruption of power delivery without affecting steady power-supply. A simple comparator added to the primary converter can take the command data. Experimental results show that the fibers can provide reliable up-link for data transmission at 200 kb/s from the secondary to the primary converter. Based on the delivery system, the secondary converter can control three auxiliary channels to provide additional information. These monitoring channels are used in a time-multiplexing mode to provide information about the operation temperature, voltage and current at the remote unit for monitoring the ECT. This preventive maintenance or built-in test can increase reliability by giving early warning for necessary maintenance request.展开更多
Preventive maintenance in the transformer is performed through a dif-ferential relay protection system,and it protects the transformer from internal and external faults.However,the Current Transformer(CT)in the differ...Preventive maintenance in the transformer is performed through a dif-ferential relay protection system,and it protects the transformer from internal and external faults.However,the Current Transformer(CT)in the differential protec-tion system mal-operates during inrush currents.CT saturates due to magnetizing inrush currents and causes false tripping of the differential relays.Moreover,iden-tification of tripping in protection relay either due to inrush current or internal faults needs to be diagnosed.For the above problem,continuous monitoring of transformer breather and CT terminals with thermal camera helps detect the trip-ping in relay due to inrush or internal fault.The transformer’s internal fault leads to high breathing process in the transformer breather,never for inrush currents.During inrush currents,CT temperature is increased.Continuous monitoring of breather and CT of the transformer through thermal imaging and radiometric pix-els detect the causes of CT saturation and differentiates maloperation.Hybrid wavelet threshold image analytics(HWT-IA)based radiometric pixels analysis of the transformer breather and CT after de-noising provides an accurate result of about 95%for identification of the false tripping of differential protection system of transformer.展开更多
This paper analyzes characteristics of multi type current transformers hybrid operation for each branch of the bus and their effects on differential protection of the bus. By theoretically analyzing transmission chara...This paper analyzes characteristics of multi type current transformers hybrid operation for each branch of the bus and their effects on differential protection of the bus. By theoretically analyzing transmission characteristics of multi type current transformers and their influence factors, we study the dynamic model testing method of multi type current transformers for the bus, and design 3 kinds of testing schemes by making the equivalent model based on the field of P-level current transformer, TPY-level current transformer and electronic current transformer, and build the hybrid operation testing platform of multi type current transformers. Finally, we compare and analyze the transmission characteristics difference of multi type current transformers on the same branch and the characteristics difference of hybrid operation in two successive external faults, analyze the cause behind the differences, and put forward the corresponding improvement measures.展开更多
This paper discusses a preferable solution to mitigate the CT (current transformer) saturation problem, and at same time, reduce the accuracy errors when considering the selection of CTs for installation on the medi...This paper discusses a preferable solution to mitigate the CT (current transformer) saturation problem, and at same time, reduce the accuracy errors when considering the selection of CTs for installation on the medium voltage switchgear of a nuclear power plant. This consideration is important for both measurement and protection functions of the digital protective relays. This is a study to ascertain the best options for a suitable solution to prevent CT saturation in relations to its protective capabilities during short circuit fault without compromising the CT accuracy class during normal operation of the system, while ensuring its conformity to the design requirement is within limit. The advantages of current transformers have proven not only to be reliable and safe, but also are of easy handling, reduction of the cost and components on the MV (medium voltage) switchgear. The purpose of this research is to identify best approach to resolve the existing problems in the current protection system. With the view of LPCT (low power current transformer) which has been newly constructed by few manufacturers to provide good protection and a wide range of measuring function without errors, some other solutions will be considered in this research.展开更多
A neural network method used to identify the different operating states of transformers has been proposed and established.It is superior to the traditional transformer protective principles and can correctly identify,...A neural network method used to identify the different operating states of transformers has been proposed and established.It is superior to the traditional transformer protective principles and can correctly identify,within half cycle from the fault inception,the internal faults,magnetizing inrush current state,external faults and switching on the internal faults of a no load transformer.In addition,this method has broad availability and high fault tolerant ability.A lot of simulations have demonstrated its superiority.展开更多
In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous p...In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous power. At the end of this paper the simulating calculation using EMTP has been also performed for the same transformer. The comparison shows that the two sets of results are very close to each other,and proves the correctness of the new method. The new method presented in this paper is helpful to verify the correctness of the power transformer design,analyze the behavior of the transformer protection under switching and study the new transformer protection principles.展开更多
The wavelet transformation is applied to the high current transformer.The high current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high current.The principle of the transformer is...The wavelet transformation is applied to the high current transformer.The high current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high current.The principle of the transformer is the Hall direct measurement principle.The transformer has the following three characteristics:firstly, the effect of the remnant field of the iron core on the measurement is decreased;secondly,because the temperature compensation is adopted,the transformer has good temperature charactreristic;thirdly,be cause the wavelet transfomation technology is adopted,the transformer has the capacity of good antijanming.展开更多
文摘For actively modulated In-line Sagnac interferential all optic fiber current transformers (AOFCTs), the accuracies are directly affected by the amplitude of the modulation signal. In order to deeply undertand the function of the modulator, a theoretical model of modulation effect to AOFCTs is built up in this paper. The effect of the amplitude of the modulation signal to the output intensity of AOFCTs is theoretically formulated and numerical calculated. The results show that the modulation voltage variation could affect the output accuracies significantly. This might be some references on the investigation for practical applications of AOFCTs.
基金funded by National Natural Science Foundation of China No.62062003Ningxia Natural Science Foundation Project No.2023AAC03293.
文摘The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are complex,the edges are blurred,and the sample numbers are unbalanced.To solve these problems,this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model(MCIF-Transformer Mask RCNN)for PET/CT lung tumor instance segmentation,The main innovative works of this paper are as follows:Firstly,the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images.The pixel dependence relationship is established in local and non-local fields to improve the model perception ability.Secondly,the Cross-scale Interactive Feature Enhancement auxiliary network is designed to provide the shallow features to the deep features,and the cross-scale interactive feature enhancement module(CIFEM)is used to enhance the attention ability of the fine-grained features.Thirdly,the Cross-scale Interactive Feature fusion FPN network(CIF-FPN)is constructed to realize bidirectional interactive fusion between deep features and shallow features,and the low-level features are enhanced in deep semantic features.Finally,4 ablation experiments,3 comparison experiments of detection,3 comparison experiments of segmentation and 6 comparison experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical image datasets.The results showed that APdet,APseg,ARdet and ARseg indexes are improved by 5.5%,5.15%,3.11%and 6.79%compared with Mask RCNN(resnet50).Based on the above research,the precise detection and segmentation of the lesion region are realized in this paper.This method has positive significance for the detection of lung tumors.
基金supported by Scientific Research Deanship at University of Ha’il,Saudi Arabia through project number RG-23137.
文摘The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome prediction.Motivated by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical images.Specifically,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution.The primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and transformers.Our proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer models.The models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and SegRap2023.Performance was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation accuracy.For instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model configurations.The 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the 2D model,although effective,generally underperformed compared to its 2.5D and 3D counterparts.Compared to related literature,our study confirms the advantages of incorporating additional spatial context,as seen in the improved performance of the 2.5D model.This research fills a significant gap by providing a detailed comparative analysis of different model dimensions and their impact on H&N segmentation accuracy in dual PET/CT imaging.
基金supported by the Natural Science Foundation of Guangdong Province,Nos.2019A1515010649(to WC),2022A1515012044(to JS)the China Postdoctoral Science Foundation,No.2018M633091(to JS).
文摘Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.
文摘In this article,a new type current transformer was developed using an active-passive circuit to improve low frequency response of the system without impairing high frequency response.The active-passive current transformer with In-flange was fabricated.Theoretical analysis,numerical simulations and experimental results are given.
文摘This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency characteristics and transient characteristics of Rogowski transducer and Rogowski-coil Current Transformer are deeply analyzed based on the physical structure of the transformer.?It is revealed that broad bandwidth of the transformer can improve the performance of protective relaying, and the bandwidth is determined mainly by the parameters of the Rogowski transducer and signal processing circuits. It is also discovered that the measurement errors of transient current mainly depend on the abilities for the current transformer to reproduce an accurate replica of the decaying dc components, which is mainly decided by the decay time constant of the aperiodic component of transient current and the parameters of the integral unit. Finally, some measures are proposed for the performance improvement of Rogowski-coil Current Transformer to meet the requirements of protective relaying system in terms of structural design and testing standards.
基金Project supported by the National Natural Science Foundation of China (Grant No.50447006)
文摘This paper describes a prototype power delivery system developed for high voltage electronic current transformer (ECT) that uses laser light to transfer power to and communicates with the primary converter. The design is based on optical-to-electrical power converters, solid-state diode lasers and optical fibers. Command signals are transmitted via the same up-fiber used to send power from secondary power supply to primary converter. The upward data transmission is completed during the brief interruption of power delivery without affecting steady power-supply. A simple comparator added to the primary converter can take the command data. Experimental results show that the fibers can provide reliable up-link for data transmission at 200 kb/s from the secondary to the primary converter. Based on the delivery system, the secondary converter can control three auxiliary channels to provide additional information. These monitoring channels are used in a time-multiplexing mode to provide information about the operation temperature, voltage and current at the remote unit for monitoring the ECT. This preventive maintenance or built-in test can increase reliability by giving early warning for necessary maintenance request.
文摘Preventive maintenance in the transformer is performed through a dif-ferential relay protection system,and it protects the transformer from internal and external faults.However,the Current Transformer(CT)in the differential protec-tion system mal-operates during inrush currents.CT saturates due to magnetizing inrush currents and causes false tripping of the differential relays.Moreover,iden-tification of tripping in protection relay either due to inrush current or internal faults needs to be diagnosed.For the above problem,continuous monitoring of transformer breather and CT terminals with thermal camera helps detect the trip-ping in relay due to inrush or internal fault.The transformer’s internal fault leads to high breathing process in the transformer breather,never for inrush currents.During inrush currents,CT temperature is increased.Continuous monitoring of breather and CT of the transformer through thermal imaging and radiometric pix-els detect the causes of CT saturation and differentiates maloperation.Hybrid wavelet threshold image analytics(HWT-IA)based radiometric pixels analysis of the transformer breather and CT after de-noising provides an accurate result of about 95%for identification of the false tripping of differential protection system of transformer.
文摘This paper analyzes characteristics of multi type current transformers hybrid operation for each branch of the bus and their effects on differential protection of the bus. By theoretically analyzing transmission characteristics of multi type current transformers and their influence factors, we study the dynamic model testing method of multi type current transformers for the bus, and design 3 kinds of testing schemes by making the equivalent model based on the field of P-level current transformer, TPY-level current transformer and electronic current transformer, and build the hybrid operation testing platform of multi type current transformers. Finally, we compare and analyze the transmission characteristics difference of multi type current transformers on the same branch and the characteristics difference of hybrid operation in two successive external faults, analyze the cause behind the differences, and put forward the corresponding improvement measures.
文摘This paper discusses a preferable solution to mitigate the CT (current transformer) saturation problem, and at same time, reduce the accuracy errors when considering the selection of CTs for installation on the medium voltage switchgear of a nuclear power plant. This consideration is important for both measurement and protection functions of the digital protective relays. This is a study to ascertain the best options for a suitable solution to prevent CT saturation in relations to its protective capabilities during short circuit fault without compromising the CT accuracy class during normal operation of the system, while ensuring its conformity to the design requirement is within limit. The advantages of current transformers have proven not only to be reliable and safe, but also are of easy handling, reduction of the cost and components on the MV (medium voltage) switchgear. The purpose of this research is to identify best approach to resolve the existing problems in the current protection system. With the view of LPCT (low power current transformer) which has been newly constructed by few manufacturers to provide good protection and a wide range of measuring function without errors, some other solutions will be considered in this research.
文摘A neural network method used to identify the different operating states of transformers has been proposed and established.It is superior to the traditional transformer protective principles and can correctly identify,within half cycle from the fault inception,the internal faults,magnetizing inrush current state,external faults and switching on the internal faults of a no load transformer.In addition,this method has broad availability and high fault tolerant ability.A lot of simulations have demonstrated its superiority.
文摘In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous power. At the end of this paper the simulating calculation using EMTP has been also performed for the same transformer. The comparison shows that the two sets of results are very close to each other,and proves the correctness of the new method. The new method presented in this paper is helpful to verify the correctness of the power transformer design,analyze the behavior of the transformer protection under switching and study the new transformer protection principles.
基金ThispaperissupportedbyNationalNatureScienceFoundationofChina (No 60 1760 2 0 )
文摘The wavelet transformation is applied to the high current transformer.The high current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high current.The principle of the transformer is the Hall direct measurement principle.The transformer has the following three characteristics:firstly, the effect of the remnant field of the iron core on the measurement is decreased;secondly,because the temperature compensation is adopted,the transformer has good temperature charactreristic;thirdly,be cause the wavelet transfomation technology is adopted,the transformer has the capacity of good antijanming.