Given an integral M-currrent To in Rm+k and a tensor H of type(m.l)on Rn+k with values orthogonal to each of its arguments we proved in a previous peper[3]the sxistence of anintegral m-current T =γ(M,θ.ζ)with bound...Given an integral M-currrent To in Rm+k and a tensor H of type(m.l)on Rn+k with values orthogonal to each of its arguments we proved in a previous peper[3]the sxistence of anintegral m-current T =γ(M,θ.ζ)with boundary T0 and mean curvature vector H by minimizing an appropriate functional on suitable subclasses of the set of all integral currents.In thes paperwe discuss the existence and structure of oriented tangent cones C of T at points x∈spt(T) spt(T),especially we show that C is locally mass minimizing.展开更多
文摘Given an integral M-currrent To in Rm+k and a tensor H of type(m.l)on Rn+k with values orthogonal to each of its arguments we proved in a previous peper[3]the sxistence of anintegral m-current T =γ(M,θ.ζ)with boundary T0 and mean curvature vector H by minimizing an appropriate functional on suitable subclasses of the set of all integral currents.In thes paperwe discuss the existence and structure of oriented tangent cones C of T at points x∈spt(T) spt(T),especially we show that C is locally mass minimizing.