期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Heterophase junction engineering-induced Co spin-state modulation of CoSe_(2) for large-current hydrogen evolution reaction
1
作者 Bao-Chai Xu Ya-Ping Miao +9 位作者 Min-Qin Mao Dong-Lian Li Song Xie Wei-Hong Jin Shu Xiao Jing Wen Zaenab Abd-Allah Zhi-Tian Liu Xiang Peng Paul K.Chu 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2660-2670,共11页
Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic C... Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting. 展开更多
关键词 Heterophase junction SPIN-STATE Hydrogen evolution reaction Large current electrochemical hydrogen production Water splitting
原文传递
Modelisation and Optimization of a Microbial Desalination Cell System
2
作者 Hedia Khaled Adel Zrelli +1 位作者 Mouna Hamed Béchir Chaouachi 《Journal of Sustainable Bioenergy Systems》 2021年第3期118-130,共13页
In this work, we used a hybrid system composed of a Microbial Desalination <span style="font-family:Verdana;">Cell (MDC). This system allows, at the same time, the treatment of </span><span st... In this work, we used a hybrid system composed of a Microbial Desalination <span style="font-family:Verdana;">Cell (MDC). This system allows, at the same time, the treatment of </span><span style="font-family:Verdana;">wastewater and the production of electrical energy for the desalination of saltwater. </span><span style="font-family:Verdana;">MDC is a cleaning technology used to purify wastewater. This process has</span><span style="font-family:Verdana;"> been driven by converting organic compounds contained in wastewater into electrical </span><span style="font-family:Verdana;">energy through biological, chemical, and electrochemical processes. The</span><span style="font-family:Verdana;"> produced electrical energy was used to desalinate the saline water. The objective of this work is the desalination or pre-desalination of seawater. For this, </span><span style="font-family:Verdana;">we </span><span style="font-family:Verdana;">have established a theoretical model consisting of differential equations de</span><span style="font-family:Verdana;">scrib</span><span style="font-family:Verdana;">ing the behavior of this system. Subsequently, we developed a program on</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">MAT-</span><span style="font-family:Verdana;">LAB software to simulate and optimized the operation of this system</span><span style="font-family:Verdana;"> and to promote the production of electrical energy in order to improve the desalination efficiency of the MDC. The theoretical re</span><span style="font-family:Verdana;">sult shows that the electrical current production is maximal when the methanogenic growth rate</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">equal to zero</span><span style="font-family:Verdana;">, increases with the increasing of influent substrate concentration and the efficiency of desalination increased with flow rate of saline water.</span> 展开更多
关键词 Microbial Desalination Cell DESALINATION WASTEWATER Electrical current production
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部