To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic array...To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.展开更多
Accumulative damage during early stage of fatigue in AISI 321 steel was investigated by eddy current test, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Surface slip, dislocation, an...Accumulative damage during early stage of fatigue in AISI 321 steel was investigated by eddy current test, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Surface slip, dislocation, and strain-induced martensite were determined as the main damage types. Moreover, damage during the fatigue was found to be increased with the increasing fatigue cycles and load amplitude. The contribution of strain-induced martensite to the total eddy current amplitude (V) was enhanced with the increase in its volume fraction. Finally, a linear relationship between V I~, and the height of surface slip was established.展开更多
基金Supported by the National Natural Science Foundation of China (60674052)
文摘To enhance the system damping,a permanent magnet set which served as an eddy current damper was added to the magnetic levitation positioning stage which consists of a moving table,four Halbach permanent magnetic arrays,four stators and displacement sensors.The dynamics model of this stage was a complex nonlinear,strong coupling system which made the control strategy to be a focus research.The nonlinear controller of the system was proposed based on the theory of differential geometry.Both simulation and experimental results show that either the decoupling control of the movement can be realized in horizontal and vertical directions,and the control performance was improved by the damper,verifying the validity and efficiency of this method.
文摘Accumulative damage during early stage of fatigue in AISI 321 steel was investigated by eddy current test, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Surface slip, dislocation, and strain-induced martensite were determined as the main damage types. Moreover, damage during the fatigue was found to be increased with the increasing fatigue cycles and load amplitude. The contribution of strain-induced martensite to the total eddy current amplitude (V) was enhanced with the increase in its volume fraction. Finally, a linear relationship between V I~, and the height of surface slip was established.