The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport ...The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport of slide and slump,fluid transport of debris flow and turbidity currents are driven by gravity in deep-water lacustrine environment.The transformation between debris flow and turbidity current,and the transformation of turbidity current between supercritical and subcritical conditions are the main dynamic mechanisms of gravity flow deposits in a lake basin.The erosion of supercritical turbidity current controls the formation of gravity-flow channel.Debris flow deposition gives rise to tongue shape lobe rather than channel.Deep-water gravity flow deposits are of two origins,intrabasinal and extrabasinal.Intrabasinal gravity flow deposits occur as single tongue-shape lobe or fan of stacking multiple lobes.Extrabasinal gravity-flow deposits occur as sublacustrine fan with channel or single channel sand body.However,the nearshore subaqueous fan is characterized by fan of stacking multiple tongue shape lobes without channel.The differential diagenesis caused by differentiation in the nearshore subaqueous fan facies belt results in the formation of diagenetic trap.The extrabasinal gravity flow deposits are one of the important reasons for the abundant deep-water sand bodies in a lake basin.Slide mass-transport deposits form a very important type of lithologic trap near the delta front often ignored.The fine-grained sediment caused by flow transformation is the potential"sweet spot"of shale oil and gas.展开更多
As the spatio-temporal variability of the Kuroshio is highly influenced by mesoscale eddies, representing its seasonal variability characteristics requires sufficiently long term observations to reduce the uncertainti...As the spatio-temporal variability of the Kuroshio is highly influenced by mesoscale eddies, representing its seasonal variability characteristics requires sufficiently long term observations to reduce the uncertainties. Geostrophic velocity data estimated from hydrographic observation from 1987 to 2010 and the shipboard ADCP velocity data from 1993 to 2008 at the PN Section in the central East China Sea are collected to view the seasonal variability objectively. From both types of observation, it is found that the seasonal climatology mean of the Kuroshio Current exhibits significant difference in three areas, which are located at the Kuroshio Current core and its two flanks in a shallow layer less than 300 m, with the weakest northeast current at the core in autumn, the strongest counter current on the right flank in spring, and the strongest northeast current on the left flank in autumn, respectively. The seasonal variance of the Kuroshio Current also exhibits significant difference on the off- shore side of the Kuroshio, with larger variance in spring and summer while smaller variance in autumn and winter. For the current parallel to the PN Section, the ratio of the seasonal variability component to the intraseasonal variability component is relatively smaller than that for the current perpendicular to the PN Section. Further analyses indicate that the seasonal variability at the PN Section is tightly linked to the upstream and downstream current variability.展开更多
This paper introduces the role of bonsai in the cultivation of talents,analyzes the current situation and existing problems of bonsai teaching in local agricultural and forestry colleges and universities,and finally p...This paper introduces the role of bonsai in the cultivation of talents,analyzes the current situation and existing problems of bonsai teaching in local agricultural and forestry colleges and universities,and finally puts forward corresponding countermeasures,including increasing the proportion of bonsai in professional courses,strengthening the introduction and training of high-quality teachers,improving the teaching model that combines theory and practice,and increasing and perfecting practice and training base of bonsai teaching.展开更多
基金Supported by the National Natural Science Foundation of China(41802127,U1762217)China National Science and Technology Major Project(2016ZX05006-003)。
文摘The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport of slide and slump,fluid transport of debris flow and turbidity currents are driven by gravity in deep-water lacustrine environment.The transformation between debris flow and turbidity current,and the transformation of turbidity current between supercritical and subcritical conditions are the main dynamic mechanisms of gravity flow deposits in a lake basin.The erosion of supercritical turbidity current controls the formation of gravity-flow channel.Debris flow deposition gives rise to tongue shape lobe rather than channel.Deep-water gravity flow deposits are of two origins,intrabasinal and extrabasinal.Intrabasinal gravity flow deposits occur as single tongue-shape lobe or fan of stacking multiple lobes.Extrabasinal gravity-flow deposits occur as sublacustrine fan with channel or single channel sand body.However,the nearshore subaqueous fan is characterized by fan of stacking multiple tongue shape lobes without channel.The differential diagenesis caused by differentiation in the nearshore subaqueous fan facies belt results in the formation of diagenetic trap.The extrabasinal gravity flow deposits are one of the important reasons for the abundant deep-water sand bodies in a lake basin.Slide mass-transport deposits form a very important type of lithologic trap near the delta front often ignored.The fine-grained sediment caused by flow transformation is the potential"sweet spot"of shale oil and gas.
基金The National Basic Research Program(973 Program)of China under contract Nos 2012CB956000 and 2011CB409803the National Natural Science Foundation of China under contract Nos 41475101,41421005,and 41276028+1 种基金the Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406401the Strategic Priority Project of Chinese Academy of Sciences under contract Nos XDA11010301 and XDA11020306
文摘As the spatio-temporal variability of the Kuroshio is highly influenced by mesoscale eddies, representing its seasonal variability characteristics requires sufficiently long term observations to reduce the uncertainties. Geostrophic velocity data estimated from hydrographic observation from 1987 to 2010 and the shipboard ADCP velocity data from 1993 to 2008 at the PN Section in the central East China Sea are collected to view the seasonal variability objectively. From both types of observation, it is found that the seasonal climatology mean of the Kuroshio Current exhibits significant difference in three areas, which are located at the Kuroshio Current core and its two flanks in a shallow layer less than 300 m, with the weakest northeast current at the core in autumn, the strongest counter current on the right flank in spring, and the strongest northeast current on the left flank in autumn, respectively. The seasonal variance of the Kuroshio Current also exhibits significant difference on the off- shore side of the Kuroshio, with larger variance in spring and summer while smaller variance in autumn and winter. For the current parallel to the PN Section, the ratio of the seasonal variability component to the intraseasonal variability component is relatively smaller than that for the current perpendicular to the PN Section. Further analyses indicate that the seasonal variability at the PN Section is tightly linked to the upstream and downstream current variability.
文摘This paper introduces the role of bonsai in the cultivation of talents,analyzes the current situation and existing problems of bonsai teaching in local agricultural and forestry colleges and universities,and finally puts forward corresponding countermeasures,including increasing the proportion of bonsai in professional courses,strengthening the introduction and training of high-quality teachers,improving the teaching model that combines theory and practice,and increasing and perfecting practice and training base of bonsai teaching.