A novel anti-jamming integrated CMOS current-sensing circuit for current-mode buck regulators is presented. Based on the widely-used traditional current-sensing structure, anti-jamming performance is improved signific...A novel anti-jamming integrated CMOS current-sensing circuit for current-mode buck regulators is presented. Based on the widely-used traditional current-sensing structure, anti-jamming performance is improved significantly by adding on-chip capacitors and one-shot circuit. Also the transient response is faster through the introduction of current offset. The circuit is concise, simple to implement and suits for SoC applications with single power supply. A dualoutput current-mode DC-DC buck converter with proposed structure has been fabricated with a 0.5 μm CMOS process for validation. In the 2.5–5.5 V input range, the two channels work steadily in the load current range of 0–600 mA. And the measured maximum efficiency is up to 96%.展开更多
基金supported by the National Key Pre-Research Program of China (Nos. D1120060967, Y30306270105)
文摘A novel anti-jamming integrated CMOS current-sensing circuit for current-mode buck regulators is presented. Based on the widely-used traditional current-sensing structure, anti-jamming performance is improved significantly by adding on-chip capacitors and one-shot circuit. Also the transient response is faster through the introduction of current offset. The circuit is concise, simple to implement and suits for SoC applications with single power supply. A dualoutput current-mode DC-DC buck converter with proposed structure has been fabricated with a 0.5 μm CMOS process for validation. In the 2.5–5.5 V input range, the two channels work steadily in the load current range of 0–600 mA. And the measured maximum efficiency is up to 96%.