A low voltage bandgap reference with curvature compensation is presented. Using current mode structure, the proposed bandgap circuit has a minimum voltage of 900mV. Compensated through the VEB linearization technique,...A low voltage bandgap reference with curvature compensation is presented. Using current mode structure, the proposed bandgap circuit has a minimum voltage of 900mV. Compensated through the VEB linearization technique, this bandgap reference can reach a temperature coefficient of 10ppmFC from 0 to 150℃. With a 1.1V supply voltage,the supply current is 43μA and the PSRR is 55dB at DC frequency. This bandgap reference has been verified in a UMC 0.18μm mixed mode CMOS technology and occupies 0. 186mm^2 of chip area.展开更多
A novel curvature-compensated CMOS bandgap voltage reference is presented. The reference utilizes two first order temperature compensations generated from the nonlinearity of the finite current gain β of vertical pnp...A novel curvature-compensated CMOS bandgap voltage reference is presented. The reference utilizes two first order temperature compensations generated from the nonlinearity of the finite current gain β of vertical pnp bipolar transistor. The proposed circuit, designed in a standard 0.18 μm CMOS process, achieves a good temperature coefficient of 2.44 ppm/℃ with temperature range from --40℃ to 85 ℃, and about 4 mV supply voltage variation in the range from 1.4 V to 2.4 V. With a 1.8 V supply voltage, the power supply rejection ratio is -56dB at 10MHz.展开更多
This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature ...This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature as well as reduce the influence of resistance-temperature dependency.Considering the degraded circuit performance caused by the process deviation,the trimmable module of the temperature coefficient(TC)is introduced to improve the circuit stability.The circuit has the advantages of simple structure,high linear stability,high TC accuracy,and trimmable TC.It consumes an area of 0.09 mm^(2)when fabricated by using the 0.25-μm complementary metal-oxide-semiconductor(CMOS)process.The proposed circuit achieves the simulated power supply rejection(PSR)of about-78.7 dB@1 kHz,the measured TC of~4.7 ppm/℃over a wide temperature range from-55℃to 125℃with the 2.5-V single-supply voltage,and the tested line regulation of 0.10 mV/V.Such a high-performance bandgap reference circuit can be widely applied in high-precision and high-reliability electronic systems.展开更多
A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of ...A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of BGR achieves fine adjustment step towards the reference voltage,while keeping optimal TC by utilizing large resistance to help layout match. The high-order curvature compensation realized by poly and p-diffusion resistors is introduced into the design to guarantee the temperature characteristic. Implemented in 180 nm technology,the proposed BGR has been simulated to have a power supply rejection ratio( PSRR) of 91 dB@100 Hz. The calibration technique covers output voltage scope of 0. 49 V-0. 56 Vwith TC of 9. 45 × 10^(-6)/℃-9. 56 × 10^(-6)/℃ over the temperature range of-40 ℃-120 ℃. The designed BGR provides a reference voltage of 500 mV,with measured TC of 10. 1 × 10^(-6)/℃.展开更多
Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-pa...Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.展开更多
A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some su...A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some sub ranges.At different temperature sub ranges the bandgap reference can be compensated by different linear functions.Since the temperature sub range is much narrower than the whole range,the compensation error can be reduced significantly.Theoretically,the precision can be improved unlimitedly if the sub ranges are narrow enough.In the given example,with only three temperature sub ranges,the temperature coefficient of a conventional bandgap reference drops from 1 5×10 -5 /℃ to 2×10 -6 /℃ over the -40℃ to 120℃ temperature range.展开更多
A new method,namely multiple point curvature compensation (MPCC),is proposed for the design of a bandgap reference,and its design principles, theoretical derivation, and one feasible circuitry implementation are pre...A new method,namely multiple point curvature compensation (MPCC),is proposed for the design of a bandgap reference,and its design principles, theoretical derivation, and one feasible circuitry implementation are presented. Being different from traditional techniques, this idea focuses on finding multiple temperatures in the whole range at which the first order derivatives of the output reference voltage equal zero. In this way, the curve of the output reference voltage is flattened and a better effect of curvature compensation is achieved. The circuitry is simulated in ST Microelectronics 0. 18μm CMOS technology, and the simulated result shows that the average temperature coefficient is only 1ppm/℃ in the range from - 40 to 125℃.展开更多
The precision controlling technology is a key step for the modern ship construction, with the precision controlling of the ship-hull curvature as one of bottlenecks in shipbuilding, where the initial is to present a c...The precision controlling technology is a key step for the modern ship construction, with the precision controlling of the ship-hull curvature as one of bottlenecks in shipbuilding, where the initial is to present a compensation value for the ship-hull plate precisely. The compensation value of the curvature plate is composed of two parts: the construction compensation, which results in the process of heating construction of curvature plate, and the assembling compensation, which results in welding ribbed stiffeners onto the curvature plate. Based on the developed computation system for the local contraction value, this paper presents a method to establish the experimented samples for the assembling compensation by means of numerical experiments, and another method to establish the practical mathematical model for the construction compensation of curvature plate. Furthermore, it introduces the experimental measuring method for the assembling compensation of the curvature plate, based on which the related database system has been developed. Numerical examples are analyzed to demonstrate the process to establish mathematical model for the assembling compensation values.展开更多
A high precision high-order curvature-compensated bandgap reference compatible with the standard CMOS process, which uses a compensation proportional to VTlnT realized by utilizing voltage to current converters and th...A high precision high-order curvature-compensated bandgap reference compatible with the standard CMOS process, which uses a compensation proportional to VTlnT realized by utilizing voltage to current converters and the voltage current characteristics of a base-emitter junction, is presented. Experiment results of the proposed bandgap reference implemented with the CSMC 0.5μm CMOS process demonstrate that a temperature coefficient of 3.9 ppm/℃ is realized at 3.6 V power supply, a power supply rejection ratio of 72 dB is achieved, and the line regulation is better than 0.304 mV/V dissipating a maximum supply current of 42 μA.展开更多
A novel current-mode voltage reference circuit which is capable of generating sub- 1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature com- pe...A novel current-mode voltage reference circuit which is capable of generating sub- 1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature com- pensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to re- duce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24μA. A temperature coefficient of 9 ppm/℃ is achieved over -25 to 125 ℃ temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × ll0μm2展开更多
针对带隙参考电压基准温漂问题设计了一款高阶补偿电路,并采用0.5μm BCD工艺进行了验证。电路采用零温度系数(TC)电流实现一阶补偿,同时采用具有正温度系数(PTC)的双极型晶体管(BJT)实现了高阶补偿。采用HSPICE软件进行了仿真,结果表明...针对带隙参考电压基准温漂问题设计了一款高阶补偿电路,并采用0.5μm BCD工艺进行了验证。电路采用零温度系数(TC)电流实现一阶补偿,同时采用具有正温度系数(PTC)的双极型晶体管(BJT)实现了高阶补偿。采用HSPICE软件进行了仿真,结果表明,所设计的电路参考电压正常值为1.8 V。另外,设计的电路具有1.5×10-6/℃的温度系数,在低频上具有55 d B电源抑制比(PSRR),从1.8~5 V具有0.4 m V/V的线性调整率,并得到20 f V2/Hz的输出噪声水平。提出的电路已应用在一款电源管理芯片中,且该电路可应用在多种便携式电子产品中。展开更多
文摘A low voltage bandgap reference with curvature compensation is presented. Using current mode structure, the proposed bandgap circuit has a minimum voltage of 900mV. Compensated through the VEB linearization technique, this bandgap reference can reach a temperature coefficient of 10ppmFC from 0 to 150℃. With a 1.1V supply voltage,the supply current is 43μA and the PSRR is 55dB at DC frequency. This bandgap reference has been verified in a UMC 0.18μm mixed mode CMOS technology and occupies 0. 186mm^2 of chip area.
文摘A novel curvature-compensated CMOS bandgap voltage reference is presented. The reference utilizes two first order temperature compensations generated from the nonlinearity of the finite current gain β of vertical pnp bipolar transistor. The proposed circuit, designed in a standard 0.18 μm CMOS process, achieves a good temperature coefficient of 2.44 ppm/℃ with temperature range from --40℃ to 85 ℃, and about 4 mV supply voltage variation in the range from 1.4 V to 2.4 V. With a 1.8 V supply voltage, the power supply rejection ratio is -56dB at 10MHz.
文摘This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature as well as reduce the influence of resistance-temperature dependency.Considering the degraded circuit performance caused by the process deviation,the trimmable module of the temperature coefficient(TC)is introduced to improve the circuit stability.The circuit has the advantages of simple structure,high linear stability,high TC accuracy,and trimmable TC.It consumes an area of 0.09 mm^(2)when fabricated by using the 0.25-μm complementary metal-oxide-semiconductor(CMOS)process.The proposed circuit achieves the simulated power supply rejection(PSR)of about-78.7 dB@1 kHz,the measured TC of~4.7 ppm/℃over a wide temperature range from-55℃to 125℃with the 2.5-V single-supply voltage,and the tested line regulation of 0.10 mV/V.Such a high-performance bandgap reference circuit can be widely applied in high-precision and high-reliability electronic systems.
基金Supported by the National Natural Science Foundation of China(61604109)the National High-Tech R&D Program of China(2015AA042605)
文摘A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of BGR achieves fine adjustment step towards the reference voltage,while keeping optimal TC by utilizing large resistance to help layout match. The high-order curvature compensation realized by poly and p-diffusion resistors is introduced into the design to guarantee the temperature characteristic. Implemented in 180 nm technology,the proposed BGR has been simulated to have a power supply rejection ratio( PSRR) of 91 dB@100 Hz. The calibration technique covers output voltage scope of 0. 49 V-0. 56 Vwith TC of 9. 45 × 10^(-6)/℃-9. 56 × 10^(-6)/℃ over the temperature range of-40 ℃-120 ℃. The designed BGR provides a reference voltage of 500 mV,with measured TC of 10. 1 × 10^(-6)/℃.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575087,51205041)Science Fund for Creative Research Groups(Grant No.51321004)+1 种基金Basic Research Foundation of Key Laboratory of Liaoning Educational Committee,China(Grant No.LZ2014003)Research Project of Ministry of Education of China(Grant No.113018A)
文摘Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.
文摘A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some sub ranges.At different temperature sub ranges the bandgap reference can be compensated by different linear functions.Since the temperature sub range is much narrower than the whole range,the compensation error can be reduced significantly.Theoretically,the precision can be improved unlimitedly if the sub ranges are narrow enough.In the given example,with only three temperature sub ranges,the temperature coefficient of a conventional bandgap reference drops from 1 5×10 -5 /℃ to 2×10 -6 /℃ over the -40℃ to 120℃ temperature range.
文摘A new method,namely multiple point curvature compensation (MPCC),is proposed for the design of a bandgap reference,and its design principles, theoretical derivation, and one feasible circuitry implementation are presented. Being different from traditional techniques, this idea focuses on finding multiple temperatures in the whole range at which the first order derivatives of the output reference voltage equal zero. In this way, the curve of the output reference voltage is flattened and a better effect of curvature compensation is achieved. The circuitry is simulated in ST Microelectronics 0. 18μm CMOS technology, and the simulated result shows that the average temperature coefficient is only 1ppm/℃ in the range from - 40 to 125℃.
文摘The precision controlling technology is a key step for the modern ship construction, with the precision controlling of the ship-hull curvature as one of bottlenecks in shipbuilding, where the initial is to present a compensation value for the ship-hull plate precisely. The compensation value of the curvature plate is composed of two parts: the construction compensation, which results in the process of heating construction of curvature plate, and the assembling compensation, which results in welding ribbed stiffeners onto the curvature plate. Based on the developed computation system for the local contraction value, this paper presents a method to establish the experimented samples for the assembling compensation by means of numerical experiments, and another method to establish the practical mathematical model for the construction compensation of curvature plate. Furthermore, it introduces the experimental measuring method for the assembling compensation of the curvature plate, based on which the related database system has been developed. Numerical examples are analyzed to demonstrate the process to establish mathematical model for the assembling compensation values.
文摘A high precision high-order curvature-compensated bandgap reference compatible with the standard CMOS process, which uses a compensation proportional to VTlnT realized by utilizing voltage to current converters and the voltage current characteristics of a base-emitter junction, is presented. Experiment results of the proposed bandgap reference implemented with the CSMC 0.5μm CMOS process demonstrate that a temperature coefficient of 3.9 ppm/℃ is realized at 3.6 V power supply, a power supply rejection ratio of 72 dB is achieved, and the line regulation is better than 0.304 mV/V dissipating a maximum supply current of 42 μA.
基金support from SMDP program, MCIT, Government of India, for providing lab facilities
文摘A novel current-mode voltage reference circuit which is capable of generating sub- 1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature com- pensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to re- duce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24μA. A temperature coefficient of 9 ppm/℃ is achieved over -25 to 125 ℃ temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × ll0μm2
文摘针对带隙参考电压基准温漂问题设计了一款高阶补偿电路,并采用0.5μm BCD工艺进行了验证。电路采用零温度系数(TC)电流实现一阶补偿,同时采用具有正温度系数(PTC)的双极型晶体管(BJT)实现了高阶补偿。采用HSPICE软件进行了仿真,结果表明,所设计的电路参考电压正常值为1.8 V。另外,设计的电路具有1.5×10-6/℃的温度系数,在低频上具有55 d B电源抑制比(PSRR),从1.8~5 V具有0.4 m V/V的线性调整率,并得到20 f V2/Hz的输出噪声水平。提出的电路已应用在一款电源管理芯片中,且该电路可应用在多种便携式电子产品中。