Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-pa...Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.展开更多
The relationship between the shape and gender of a face, with particular application to automatic gender classification, has been the subject of significant research in recent years. Determining the gender of a face, ...The relationship between the shape and gender of a face, with particular application to automatic gender classification, has been the subject of significant research in recent years. Determining the gender of a face, especially when dealing with unseen examples, presents a major challenge. This is especially true for certain age groups, such as teenagers, due to their rapid development at this phase of life. This study proposes a new set of facial morphological descriptors,based on 3D geodesic path curvatures, and uses them for gender analysis. Their goal is to discern key facial areas related to gender, specifically suited to the task of gender classification. These new curvature-based features are extracted along the geodesic path between two biological landmarks located in key facial areas.Classification performance based on the new features is compared with that achieved using the Euclidean and geodesic distance measures traditionally used in gender analysis and classification. Five different experiments were conducted on a large teenage face database(4745 faces from the Avon Longitudinal Study of Parents and Children) to investigate and justify the use of the proposed curvature features. Our experiments show that the combination of the new features with geodesic distances provides a classification accuracy of 89%. They also show that nose-related traits provide the most discriminative facial feature for gender classification, with the most discriminative features lying along the 3D face profile curve.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51575087,51205041)Science Fund for Creative Research Groups(Grant No.51321004)+1 种基金Basic Research Foundation of Key Laboratory of Liaoning Educational Committee,China(Grant No.LZ2014003)Research Project of Ministry of Education of China(Grant No.113018A)
文摘Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.
文摘The relationship between the shape and gender of a face, with particular application to automatic gender classification, has been the subject of significant research in recent years. Determining the gender of a face, especially when dealing with unseen examples, presents a major challenge. This is especially true for certain age groups, such as teenagers, due to their rapid development at this phase of life. This study proposes a new set of facial morphological descriptors,based on 3D geodesic path curvatures, and uses them for gender analysis. Their goal is to discern key facial areas related to gender, specifically suited to the task of gender classification. These new curvature-based features are extracted along the geodesic path between two biological landmarks located in key facial areas.Classification performance based on the new features is compared with that achieved using the Euclidean and geodesic distance measures traditionally used in gender analysis and classification. Five different experiments were conducted on a large teenage face database(4745 faces from the Avon Longitudinal Study of Parents and Children) to investigate and justify the use of the proposed curvature features. Our experiments show that the combination of the new features with geodesic distances provides a classification accuracy of 89%. They also show that nose-related traits provide the most discriminative facial feature for gender classification, with the most discriminative features lying along the 3D face profile curve.