The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically a...The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.展开更多
Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the...Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3- dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.展开更多
The normal shock at a curved surface in transonic flow leads to a superdetermined boundary value problem. A bump behind the shock decreases the drag of the airfoil and reduces the necessary energy. Flows of non-Newton...The normal shock at a curved surface in transonic flow leads to a superdetermined boundary value problem. A bump behind the shock decreases the drag of the airfoil and reduces the necessary energy. Flows of non-Newtonian media lead in the contrary to subdetermined boundary initial problems. The energy balance for these fluids is of great interest for chemical engineering.展开更多
基金The project suported partially by National Natural Science Foundation of China
文摘The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.
基金Project supported by the National Natural Science Foundation of China (No.10272097) and the Foundation of National Key Laboratory of Ballistics (No.51453040101zk0103)
文摘Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3- dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.
文摘The normal shock at a curved surface in transonic flow leads to a superdetermined boundary value problem. A bump behind the shock decreases the drag of the airfoil and reduces the necessary energy. Flows of non-Newtonian media lead in the contrary to subdetermined boundary initial problems. The energy balance for these fluids is of great interest for chemical engineering.