Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods fo...Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well(MFHW). Based on the perpendicular bisection(PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs.展开更多
Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structur...Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. These results suggested that improved the population environment of MCP or the utilization of the free space in the field of FEP could be reached either by wider row-spacing or narrow row-spacing.展开更多
The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowba...The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowback and long-term production data.However,two-phase flow of water and hydrocarbon after an HF stimulation together with the complex transport mechanisms in shale nanopores exacerbate the nonlinearity of the transport equation,causing errors in type-curve analysis.Accordingly,we propose a new two-phase type-curve method to estimate HF properties,such as HF volume and permeability of fracture,through the analysis of flowback data of multi-fractured shale wells.The proposed type curve is based on a semianalytical solution that couples the two-phase flow from the matrix with the flow in HF by incorporating matrix influx,slippage effect,stress dependence,and the spatial variation of fluid properties in inorganic and organic pores.For the first time,multiple fluid transport mechanisms are considered into two-phase type-curve analysis for shale reservoirs.We analyze the flowback data from a multi-fractured horizontal well in a shale gas reservoir to verify the field application of the proposed method.The results show that the fracture properties calculated by the type-curve method are in good agreement with the long-time production data.展开更多
A novel type curve is presented for oil recovery factor prediction suitable for gas flooding by innovatively introducing the equivalent water-gas cut to replace the water cut,comprehensively considering the impact of ...A novel type curve is presented for oil recovery factor prediction suitable for gas flooding by innovatively introducing the equivalent water-gas cut to replace the water cut,comprehensively considering the impact of three-phase flow(oil,gas,water),and deriving the theoretical equations of gas flooding type curve based on Tong’s type curve.The equivalent water-gas cut is the ratio of the cumulative underground volume of gas and water production to the total underground volume of produced fluids.Field production data and the numerical simulation results are used to demonstrate the feasibility of the new type curve and verify the accuracy of the prediction results with field cases.The new type curve is suitable for oil recovery factor prediction of both water flooding and gas flooding.When a reservoir has no gas injected or produced,the gas phase can be ignored and only the oil and water phases need to be considered,in this case,this gas flooding type curve returns to the Tong’s type curve,which can evaluate the oil recovery factor of water flooding.For reservoirs with equivalent water-gas cuts of 60%-80%,the regression method of the new type curve works well in predicting the oil recovery factor.For reservoirs with equivalent water-gas cuts higher than 80%,both the regression and assignment methods of the new type curve can accurately predict the oil recovery factor of gas flooding.展开更多
The development and application of a new solution is demonstrated for the type-curve analysis and in-terpretation of well test data from a multiwell reservoir system of both production and injection wells with two-pha...The development and application of a new solution is demonstrated for the type-curve analysis and in-terpretation of well test data from a multiwell reservoir system of both production and injection wells with two-phase flow. The buildup type curves or buildup behavior could be obtained through the solution by using su-perposition. But a new outer boundary condition for variable pressure boundary must be introduced to obtain the correct pressure buildup solutions by superposition. A technique is shown to determine the deviation time from the infinite-acting semilog radial flow stabilization in the derivatives of pressure, which is calculated with respect to and plotted vs. shut-in time. Field examples are given to illustrate the use of the proposed method for analyzing transient pressure data from a well located in a multi-well water-injection reservoir. An adaptive genetic algorithm-based method is used to match the pressure and pressure derivative data to estimate reservoir parameters. The validity and applicability of the proposed method are also demonstrated through the examples.展开更多
This paper presents a class of Cn- continuous B- type spline curves with some paramet- ric factors.The length of their local support is equal to4.Taking the different values of the parametric factors,the curves can ...This paper presents a class of Cn- continuous B- type spline curves with some paramet- ric factors.The length of their local support is equal to4.Taking the different values of the parametric factors,the curves can become free- type curves or interpolate a set of given points even mix the both cases.When the parametric factors satisfy the certain conditions,the degrees of the curves can be decreased as low as possible.Besides,when all the parametric factors tend to zero,the curves globally approximate to the control polygon.展开更多
For the plane curves Γ,the maximal operator associated to it is defined by Mf(x)=sup|∫f(x-Γ(t))(r^(-1)t)r^(-1)dt| where is a Schwartz function.For a certain class of curves in R^2,M is shown to bounded on (H(R^2)...For the plane curves Γ,the maximal operator associated to it is defined by Mf(x)=sup|∫f(x-Γ(t))(r^(-1)t)r^(-1)dt| where is a Schwartz function.For a certain class of curves in R^2,M is shown to bounded on (H(R^2),Weak L^1(R^2).This extends the theorem of Stein & Wainger and the theo- rem of Weinberg.展开更多
Non-Darcian radial flow toward a finite-diameter, fully penetrating well in a confined aquifer was analyzed on the basis of the Izbash equation with consideration of the wellbore storage effect. We derived semi-analyt...Non-Darcian radial flow toward a finite-diameter, fully penetrating well in a confined aquifer was analyzed on the basis of the Izbash equation with consideration of the wellbore storage effect. We derived semi-analytical solutions of drawdown by using the Boltzmann transform, and obtained approximate analytical solutions of the drawdown at early and late times. MATLAB programs were developed to facilitate computation of the semi-analytical solutions. The turbulence factor v which was directly related to the pumping rate appeared to have negligible influence upon the wellbore well function at early times, but imposed significant influence at intermediate and late times. However, the turbulence factor v imposed non-negligible influence upon the aquifer well function during the entire pumping period, provided that the observation point was not sufficiently close to the wellbore. Sensitivity analysis indicated that the power index n in the Izbash equation had less influence on the type curves at the face of the pumping wellbore, but had much greater influence upon the well function in the aquifer. As the n values increased, the drawdown in the aquifer decreased at early times and increased at late times. The Boltzmann transformation could only be used in an approximate sense for radial non-Darcian flow problems. This approximation would provide accurate solutions at early times, and introduce small but consistent discrepancies at intermediate and late times for the wellbore well function.展开更多
Carbonate reservoir patterns play an important role in the production performance of oil and gas wells,and it is usually classified through static data analysis which cannot reflect the actual well performance.This pa...Carbonate reservoir patterns play an important role in the production performance of oil and gas wells,and it is usually classified through static data analysis which cannot reflect the actual well performance.This paper takes the Tazhong No.1 gas field in the Tarim Basin,China as an example to investigate the classification of carbonate reservoirs.The classification method mainly combines well test analysis with production analysis—especially the Blasingame type curve method.Based on the characteristics of type curves for well test analysis and the Blasingame method,the relationship between the type curves and reservoir pattern was established.More than 20 wells were analyzed and the reservoirs were classified into 3 major patterns with 7 sub-classes.Furthermore,the classification results were validated by dynamic performance analysis of wells in the Tazhong No.1 gas field.On the basis of the classification results,well stimulation(i.e.water flooding in a single well) was carried out in three volatile-oil wells,and the oil recovery increased by up to 20%.展开更多
In view of the anisotropy,heterogeneity and stress-sensitive permeability in low permeability reservoirs,an analytical well test model was established by introducing the concept of permeability modulus.This model cons...In view of the anisotropy,heterogeneity and stress-sensitive permeability in low permeability reservoirs,an analytical well test model was established by introducing the concept of permeability modulus.This model considered the permeability stress-sensitivity,wellbore storage effect,and the skin effect.The perturbation technique and Laplace transformation were used to solve the mathematical model analytically in Laplace space,and the bottom-hole pressure type curves were plotted and analyzed in real space by using the Stehfest numerical inversion.展开更多
To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical sol...Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.展开更多
Reservoir boundary shape has a great influence on the transient pressure response of oil wells located in arbitrarily shaped reservoirs. Conventional analytical methods can only be used to calculate transient pressure...Reservoir boundary shape has a great influence on the transient pressure response of oil wells located in arbitrarily shaped reservoirs. Conventional analytical methods can only be used to calculate transient pressure response in regularly shaped reservoirs. Under the assumption that permeability varies exponentially with pressure drop, a mathematical model for well test interpretation of arbitrarily shaped deformable reservoirs was established. By using the regular perturbation method and the boundary element method, the model could be solved. The pressure behavior of wells with wellbore storage and skin effects was obtained by using the Duhamel principle. The type curves were plotted and analyzed by considering the effects of permeability modulus, arbitrary shape and impermeable region.展开更多
The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusio...The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data.展开更多
This article presents a new well test model for two-zone linear composite reservoirs, where the rock and fluid properties as well as the formation thicknesses on both sides of the discontinuity are distinctly differen...This article presents a new well test model for two-zone linear composite reservoirs, where the rock and fluid properties as well as the formation thicknesses on both sides of the discontinuity are distinctly different. An analytical solution of pressure-transient behavior for a line-source, constant-rate well in this type of reservoir configuration is obtained with Fourier space transformation and Laplace transformation. By applying Duhamel principle, the wellbore storage and skins effects can easily be included. A set of type curves are generated and the sensitivities of the relevant parameters are discussed. A new correlating parameter MhDl√ηD is proposed to identify the pressure response in the pressure derivative curve. The model as well as the corresponding type curves are quite general that they are useful in predicting the production performance or analyzing the production data from this type of well-reservoir systems.展开更多
The transient flow mathematical model of arbitrary shaped heterogeneous reservoirs with impermeability barrier is proposed in this paper. In order to establish this model, the perturbation method is employed and the s...The transient flow mathematical model of arbitrary shaped heterogeneous reservoirs with impermeability barrier is proposed in this paper. In order to establish this model, the perturbation method is employed and the solution of model is expanded into a series in powers of perturbation parameter. By using the Boundary Element Method (BEM) and Duhamel principle, wellbore pressure with effects of skins and wellbore storage is obtained. The type curves are plotted and analyzed considering effects of heterogeneity, arbitrary shape and impermeable barriers. Finally, the results obtained by perturbation boundary element method is compared with the analytical solution and is available for the transient pressure analysis of arbitrary shaped reservoirs.展开更多
This article presents a new well test model for stress-sensitive composite dual-porosity reservoirs based on the concept of permeability modulus, where the rock and fluid properties as well as the formation thickness ...This article presents a new well test model for stress-sensitive composite dual-porosity reservoirs based on the concept of permeability modulus, where the rock and fluid properties as well as the formation thickness vary in the radial direction. An analytical solution in the Laplace space for the pressure-transient behavior for a line-source, constant-rate well of this type of reservoir is obtained with the Laplace transformation and the perturbation technique. The pressure and its derivative in the reservoir and the effects of relevant parameters on the pressure-transient response are obtained. The model as well as the corresponding type curves may be used in predicting the production performance or analyzing the production data for this type of reservoir.展开更多
A transient flow model of tree-shaped fractal reservoirs is built by embedding a fracture network simulated by a tree-shaped fractal network into a matrix system. The model can be solved using the Laplace conversion m...A transient flow model of tree-shaped fractal reservoirs is built by embedding a fracture network simulated by a tree-shaped fractal network into a matrix system. The model can be solved using the Laplace conversion method. The dimensionless bottom hole pressure can be obtained using the Stehfest numerical inversion method. The bi-logarithmic type curves for the trce-shaped fractal reservoirs are thus obtained. The pressure transient responses under different fractal factors are discussed. The factors with a primary effect on the inter-porosity flow regime include the initial branch number N, the length ratio α, and the branch angle θ. The diameter ratio β has a significant effect on the fracture radial flow, the inter-porosity and the total system radial flow regimes. The total branch level M of the network mainly influences the total system radial flow regime. The model presented in this paper provides a new methodology for analyzing and predicting the pressure dynamic characteristics of naturally fractured reservoirs.展开更多
Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution...Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution is obtained by using the mirror image principle. Wellbore pressure response of a slanted well is obtained by integration of the basic point source solution along the trajectory of a slanted well and the type curves are computed. The dimensionless bottom hole pressure and type curves are obtained and the sensitivities of related parameters are discussed. The model presented in this paper could be used for the well test analysis of a slanted well in a reservoir bounded by an impermeable fault.展开更多
This paper focuses on two cases of two-dimensional wave equations with fractal boundaries. The first case is the equation with classical derivative. The formal solution is obtained. And a definition of the solution is...This paper focuses on two cases of two-dimensional wave equations with fractal boundaries. The first case is the equation with classical derivative. The formal solution is obtained. And a definition of the solution is given. Then we prove that under certain conditions, the solution is a kind of fractal function, which is continuous, differentiable nowhere in its domain. Next, for specific given initial position and 3 different initial velocities, the graphs of solutions are sketched. By computing the box dimensions of boundaries of cross-sections for solution surfaces, we evaluate the range of box dimension of the vibrating membrane. The second case is the equation with p-type derivative. The corresponding solution is shown and numerical example is given.展开更多
基金Project(2013CB228005)supported by the National Basic Research Program of China
文摘Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well(MFHW). Based on the perpendicular bisection(PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs.
基金Supported by the National Key Technology R&D Program (2007BAD65B01-4)Science and Technology Development Plan of Heilongjiang Province in China (GB06B104-1-5)Key Technology R&D Program of Heilongjiang Province in China (GA09B102-3)
文摘Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. These results suggested that improved the population environment of MCP or the utilization of the free space in the field of FEP could be reached either by wider row-spacing or narrow row-spacing.
基金This research is supported by National Natural Science Foundation of China(No.52204057)the Science Foundation of China University of Petroleum,Beijing(No.2462021BJRC003 and 2462021YJRC012).
文摘The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowback and long-term production data.However,two-phase flow of water and hydrocarbon after an HF stimulation together with the complex transport mechanisms in shale nanopores exacerbate the nonlinearity of the transport equation,causing errors in type-curve analysis.Accordingly,we propose a new two-phase type-curve method to estimate HF properties,such as HF volume and permeability of fracture,through the analysis of flowback data of multi-fractured shale wells.The proposed type curve is based on a semianalytical solution that couples the two-phase flow from the matrix with the flow in HF by incorporating matrix influx,slippage effect,stress dependence,and the spatial variation of fluid properties in inorganic and organic pores.For the first time,multiple fluid transport mechanisms are considered into two-phase type-curve analysis for shale reservoirs.We analyze the flowback data from a multi-fractured horizontal well in a shale gas reservoir to verify the field application of the proposed method.The results show that the fracture properties calculated by the type-curve method are in good agreement with the long-time production data.
基金Supported by the National Natural Science Foundation of China(51974268)the Sichuan Province Science and Technology Program(2019YJ0423)。
文摘A novel type curve is presented for oil recovery factor prediction suitable for gas flooding by innovatively introducing the equivalent water-gas cut to replace the water cut,comprehensively considering the impact of three-phase flow(oil,gas,water),and deriving the theoretical equations of gas flooding type curve based on Tong’s type curve.The equivalent water-gas cut is the ratio of the cumulative underground volume of gas and water production to the total underground volume of produced fluids.Field production data and the numerical simulation results are used to demonstrate the feasibility of the new type curve and verify the accuracy of the prediction results with field cases.The new type curve is suitable for oil recovery factor prediction of both water flooding and gas flooding.When a reservoir has no gas injected or produced,the gas phase can be ignored and only the oil and water phases need to be considered,in this case,this gas flooding type curve returns to the Tong’s type curve,which can evaluate the oil recovery factor of water flooding.For reservoirs with equivalent water-gas cuts of 60%-80%,the regression method of the new type curve works well in predicting the oil recovery factor.For reservoirs with equivalent water-gas cuts higher than 80%,both the regression and assignment methods of the new type curve can accurately predict the oil recovery factor of gas flooding.
文摘The development and application of a new solution is demonstrated for the type-curve analysis and in-terpretation of well test data from a multiwell reservoir system of both production and injection wells with two-phase flow. The buildup type curves or buildup behavior could be obtained through the solution by using su-perposition. But a new outer boundary condition for variable pressure boundary must be introduced to obtain the correct pressure buildup solutions by superposition. A technique is shown to determine the deviation time from the infinite-acting semilog radial flow stabilization in the derivatives of pressure, which is calculated with respect to and plotted vs. shut-in time. Field examples are given to illustrate the use of the proposed method for analyzing transient pressure data from a well located in a multi-well water-injection reservoir. An adaptive genetic algorithm-based method is used to match the pressure and pressure derivative data to estimate reservoir parameters. The validity and applicability of the proposed method are also demonstrated through the examples.
文摘This paper presents a class of Cn- continuous B- type spline curves with some paramet- ric factors.The length of their local support is equal to4.Taking the different values of the parametric factors,the curves can become free- type curves or interpolate a set of given points even mix the both cases.When the parametric factors satisfy the certain conditions,the degrees of the curves can be decreased as low as possible.Besides,when all the parametric factors tend to zero,the curves globally approximate to the control polygon.
文摘For the plane curves Γ,the maximal operator associated to it is defined by Mf(x)=sup|∫f(x-Γ(t))(r^(-1)t)r^(-1)dt| where is a Schwartz function.For a certain class of curves in R^2,M is shown to bounded on (H(R^2),Weak L^1(R^2).This extends the theorem of Stein & Wainger and the theo- rem of Weinberg.
基金the National Natural Science Foundation of China (Nos.50428907 and 50479011)
文摘Non-Darcian radial flow toward a finite-diameter, fully penetrating well in a confined aquifer was analyzed on the basis of the Izbash equation with consideration of the wellbore storage effect. We derived semi-analytical solutions of drawdown by using the Boltzmann transform, and obtained approximate analytical solutions of the drawdown at early and late times. MATLAB programs were developed to facilitate computation of the semi-analytical solutions. The turbulence factor v which was directly related to the pumping rate appeared to have negligible influence upon the wellbore well function at early times, but imposed significant influence at intermediate and late times. However, the turbulence factor v imposed non-negligible influence upon the aquifer well function during the entire pumping period, provided that the observation point was not sufficiently close to the wellbore. Sensitivity analysis indicated that the power index n in the Izbash equation had less influence on the type curves at the face of the pumping wellbore, but had much greater influence upon the well function in the aquifer. As the n values increased, the drawdown in the aquifer decreased at early times and increased at late times. The Boltzmann transformation could only be used in an approximate sense for radial non-Darcian flow problems. This approximation would provide accurate solutions at early times, and introduce small but consistent discrepancies at intermediate and late times for the wellbore well function.
基金financial support from"Major Projects about Carbonate Reservoirs of Petrochina (2008E-0610-08)""Young Innovation Fund Project of Research Institute of Petroleum Exploration and Development (2009-A-17-13)"
文摘Carbonate reservoir patterns play an important role in the production performance of oil and gas wells,and it is usually classified through static data analysis which cannot reflect the actual well performance.This paper takes the Tazhong No.1 gas field in the Tarim Basin,China as an example to investigate the classification of carbonate reservoirs.The classification method mainly combines well test analysis with production analysis—especially the Blasingame type curve method.Based on the characteristics of type curves for well test analysis and the Blasingame method,the relationship between the type curves and reservoir pattern was established.More than 20 wells were analyzed and the reservoirs were classified into 3 major patterns with 7 sub-classes.Furthermore,the classification results were validated by dynamic performance analysis of wells in the Tazhong No.1 gas field.On the basis of the classification results,well stimulation(i.e.water flooding in a single well) was carried out in three volatile-oil wells,and the oil recovery increased by up to 20%.
基金support from the National 973 Program (Grant No. 2006CB705808)PetroChina Young and Middle Aged People Innovation Fund (Grant No. 07E1016)+1 种基金PetroChina Science & Technology Innovation Fund (Grant No. 2008D-5006-02-09)Science & Technology Innovation Fund of Southwest Petroleum University (Grant No. 2007XJZ010)
文摘In view of the anisotropy,heterogeneity and stress-sensitive permeability in low permeability reservoirs,an analytical well test model was established by introducing the concept of permeability modulus.This model considered the permeability stress-sensitivity,wellbore storage effect,and the skin effect.The perturbation technique and Laplace transformation were used to solve the mathematical model analytically in Laplace space,and the bottom-hole pressure type curves were plotted and analyzed in real space by using the Stehfest numerical inversion.
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
基金Project(2011ZX05015)supported by Important National Science and Technology Specific Projects of the "Twelfth Five-years" Plan Period,China
文摘Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.
文摘Reservoir boundary shape has a great influence on the transient pressure response of oil wells located in arbitrarily shaped reservoirs. Conventional analytical methods can only be used to calculate transient pressure response in regularly shaped reservoirs. Under the assumption that permeability varies exponentially with pressure drop, a mathematical model for well test interpretation of arbitrarily shaped deformable reservoirs was established. By using the regular perturbation method and the boundary element method, the model could be solved. The pressure behavior of wells with wellbore storage and skin effects was obtained by using the Duhamel principle. The type curves were plotted and analyzed by considering the effects of permeability modulus, arbitrary shape and impermeable region.
基金Supported by the National Natural Science Foundation of China(52104049)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004)。
文摘The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data.
基金Project supported by the National Key Basic Research Program of China (973 Program,Grant No.2006CB705808)the State Major Science and Technology Special Project during the 11th Five-year Plan (Grant No.2008ZX05054)
文摘This article presents a new well test model for two-zone linear composite reservoirs, where the rock and fluid properties as well as the formation thicknesses on both sides of the discontinuity are distinctly different. An analytical solution of pressure-transient behavior for a line-source, constant-rate well in this type of reservoir configuration is obtained with Fourier space transformation and Laplace transformation. By applying Duhamel principle, the wellbore storage and skins effects can easily be included. A set of type curves are generated and the sensitivities of the relevant parameters are discussed. A new correlating parameter MhDl√ηD is proposed to identify the pressure response in the pressure derivative curve. The model as well as the corresponding type curves are quite general that they are useful in predicting the production performance or analyzing the production data from this type of well-reservoir systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos: 50174011 10172028) the Science Tech. Research Program of Heilongjiang Provincial Education Department (Grant No: 10531032).
文摘The transient flow mathematical model of arbitrary shaped heterogeneous reservoirs with impermeability barrier is proposed in this paper. In order to establish this model, the perturbation method is employed and the solution of model is expanded into a series in powers of perturbation parameter. By using the Boundary Element Method (BEM) and Duhamel principle, wellbore pressure with effects of skins and wellbore storage is obtained. The type curves are plotted and analyzed considering effects of heterogeneity, arbitrary shape and impermeable barriers. Finally, the results obtained by perturbation boundary element method is compared with the analytical solution and is available for the transient pressure analysis of arbitrary shaped reservoirs.
基金supported by the National Key Basic Research Project of China (973 Program, Grant No. 2011CB201005)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20105121110006)the National Science Fund for Distinguished Young Scho-lars of China(Grant No. 51125019)
文摘This article presents a new well test model for stress-sensitive composite dual-porosity reservoirs based on the concept of permeability modulus, where the rock and fluid properties as well as the formation thickness vary in the radial direction. An analytical solution in the Laplace space for the pressure-transient behavior for a line-source, constant-rate well of this type of reservoir is obtained with the Laplace transformation and the perturbation technique. The pressure and its derivative in the reservoir and the effects of relevant parameters on the pressure-transient response are obtained. The model as well as the corresponding type curves may be used in predicting the production performance or analyzing the production data for this type of reservoir.
基金supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.51125019)supported by the 2014 Australia China National Gas Technology Partnership Fund Top Up Scholoarship
文摘A transient flow model of tree-shaped fractal reservoirs is built by embedding a fracture network simulated by a tree-shaped fractal network into a matrix system. The model can be solved using the Laplace conversion method. The dimensionless bottom hole pressure can be obtained using the Stehfest numerical inversion method. The bi-logarithmic type curves for the trce-shaped fractal reservoirs are thus obtained. The pressure transient responses under different fractal factors are discussed. The factors with a primary effect on the inter-porosity flow regime include the initial branch number N, the length ratio α, and the branch angle θ. The diameter ratio β has a significant effect on the fracture radial flow, the inter-porosity and the total system radial flow regimes. The total branch level M of the network mainly influences the total system radial flow regime. The model presented in this paper provides a new methodology for analyzing and predicting the pressure dynamic characteristics of naturally fractured reservoirs.
文摘Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution is obtained by using the mirror image principle. Wellbore pressure response of a slanted well is obtained by integration of the basic point source solution along the trajectory of a slanted well and the type curves are computed. The dimensionless bottom hole pressure and type curves are obtained and the sensitivities of related parameters are discussed. The model presented in this paper could be used for the well test analysis of a slanted well in a reservoir bounded by an impermeable fault.
基金Supported by National Natural Science Foundation of China(Grant No.10571084)
文摘This paper focuses on two cases of two-dimensional wave equations with fractal boundaries. The first case is the equation with classical derivative. The formal solution is obtained. And a definition of the solution is given. Then we prove that under certain conditions, the solution is a kind of fractal function, which is continuous, differentiable nowhere in its domain. Next, for specific given initial position and 3 different initial velocities, the graphs of solutions are sketched. By computing the box dimensions of boundaries of cross-sections for solution surfaces, we evaluate the range of box dimension of the vibrating membrane. The second case is the equation with p-type derivative. The corresponding solution is shown and numerical example is given.