A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a s...A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.展开更多
Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressi...Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.展开更多
文摘A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.
基金the National Natural Science Foundation of China (Grant No. 40776045)Shanghai Leading Academic Discipline Project (Grant No. Y0103)the National Basic Research Program of China (973 Program, Grant No. 2007CB714101).
文摘Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.