To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers ...To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers to represent the importance of each demand.Then,the preference information is aggregated using customer weights and time period weights through the intuitionistic fuzzy ordered weighted average operator,yielding a dynamic vector of the subjective importance of the demand index.Finally,the feasibility of the proposed method is demonstrated through an application example of a vibrating sorting screen.展开更多
Currently,talent training in Chinese universities for landscape architecture is mainly divided into three directions:“landscape planning and design,”“landscape construction management,”and“landscape plant plantin...Currently,talent training in Chinese universities for landscape architecture is mainly divided into three directions:“landscape planning and design,”“landscape construction management,”and“landscape plant planting and maintenance.”However,with the background of the slowing urbanization process and the widespread demand for composite talents in society,it remains to be verified whether the traditional three major talent training directions in landscape architecture align with the job demands in the current construction market.Based on a survey and analysis of over 300 industry practitioners,this study found a clear trend of merging the three major employment directions into“landscape design and construction”and“landscape plant planting and maintenance.”This presents new requirements and directions for the skill training of landscape architecture majors in universities and provides insights into the alignment between talent training and employment demands in other industries.展开更多
Objective:To identify the group classification of discharged older adults’digital transition care demands and analyze its influencing factors.Methods:From July to August 2022,we used stratified random sampling to rec...Objective:To identify the group classification of discharged older adults’digital transition care demands and analyze its influencing factors.Methods:From July to August 2022,we used stratified random sampling to recruit older patients who were discharged between July 2021 and July 2022 from tertiary hospitals in Shanghai.We used latent profile analysis to classify the older patients into distinct groups based on their service demands:low,medium,and high.We use multiple logistic regression to explore the factors influencing the different demand levels.Results:The degree of discharged older patients’demand was classified as low(Category 1(C1),34.2%),medium(Category 2(C2),49.5%),high-demand levels(Category 3(C3),16.3%).Compared to those have C2,older adults in C1 are more likely to be male(Odds Ratio(OR)=2.81,P=0.02),have 2 chronic diseases(OR=3.91,P=0.03),and are less likely to be junior high and below(OR=0.09,P=0.00),hospitalized for 1–2 times in the past year(1 times:OR=0.19,P=0.07;2 times:OR=0.14,P=0.02),living with children(OR=0.32,P=0.05),have less insurance(OR=0.48,P=0.03),less understanding of digital transitional care(OR=0.47,P=0.01),have less eHealth literacy(OR=0.80,P=0.00),have less degree of importance attributed by family(OR=0.52,P=0.03);Compared to those have medium demand level,older adults in high demand level are more likely to have self and spouse as primary income(self:OR=26.35,P=0.00;spouse:OR=24.06,P=0.02),walking to the nearest health facility(self:6.74,P=0.03),have higher eHealth literacy(OR=1.88,P=0.00),degree of importance within the family(OR=5.19,P=0.01),higher self’s influence on medical decisions-making(OR=5.69.P=0.01).They are less likely to be in 60–79 years group(OR=0.00–0.37,P=0.00–0.03),Household Annual Income<5,000 CNY(OR=0.05,P=0.02).Conclusion:Digital transitional care demands of discharged older patients can be divided into three categories.Constructing a digital transitional care service system that aligns with the demands of discharged older patients is essential.Communication,care plan development,and follow-up are the most fundamental services.Additionally,it is essential to understand the characteristics of high-demand populations to provide tailored services and identify vulnerable populations from health and social perspectives to offer cost-effective transitional care services.展开更多
Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement o...Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.展开更多
In order to improve the satisfaction degree of customers’individual demands for products and reduce the risk of the product innovation,the characteristics of customer demands for product innovation are analyzed,and t...In order to improve the satisfaction degree of customers’individual demands for products and reduce the risk of the product innovation,the characteristics of customer demands for product innovation are analyzed,and the type and content of customer demands are discussed.Then the framework of customer demands acquisition for product innovation is established.Final- ly,the prototype system of customer demands information acquisition and product customization for product innovation which takes mobile phone as the example is developed successfully.展开更多
In order to improve the satisfaction degree of customers’ individual demands on products and reduce the risk of the product innovation,the characteristics of customer demands for product innovation are analyzed,and t...In order to improve the satisfaction degree of customers’ individual demands on products and reduce the risk of the product innovation,the characteristics of customer demands for product innovation are analyzed,and their type and content are discussed. Then the framework of customer demands acquisition for product innovation is established. Finally,the prototype system of customer demands information acquisition and product customization for product innovation which takes mobile phone as the example is developed successfully.展开更多
Purpose–Facing the diverse needs of large-scale customers,based on available railway service resources and service capabilities,this paper aims to research the design method of railway freight service portfolio,selec...Purpose–Facing the diverse needs of large-scale customers,based on available railway service resources and service capabilities,this paper aims to research the design method of railway freight service portfolio,select optimal service solutions and provide customers with comprehensive and customized freight services.Design/methodology/approach–Based on the characteristics of railway freight services throughout the entire process,the service system is decomposed into independent units of service functions,and a railway freight service combination model is constructed with the goal of minimizing response time,service cost and service time.A model solving algorithm based on adaptive genetic algorithm is proposed.Findings–Using the computational model,an empirical analysis was conducted on the entire process freight service plan for starch sold from Xi’an to Chengdu as an example.The results showed that the proposed optimization model and algorithm can effectively guide the design of freight plans and provide technical support for real-time response to customers’diversified entire process freight service needs.Originality/value–With the continuous optimization and upgrading of railway freight source structure,customer demands are becoming increasingly diverse and personalized.Studying and designing a reasonable railway freight service plan throughout the entire process is of great significance for timely response to customer needs,improving service efficiency and reducing design costs.展开更多
To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and ...To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes.展开更多
This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.Th...This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimizatio...To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance.展开更多
Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial pass...Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling.展开更多
Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable...Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.展开更多
Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced ...Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.展开更多
In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a sma...In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.展开更多
To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When a...To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost.展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data a...End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data analysis. However, Excel functionalities have limits compared to dedicated programming languages. This paper addresses this gap by proposing a prototype for integrating Python’s capabilities into Excel through on-premises desktop to build custom spreadsheet functions with Python. This approach overcomes potential latency issues associated with cloud-based solutions. This prototype utilizes Excel-DNA and IronPython. Excel-DNA allows creating custom Python functions that seamlessly integrate with Excel’s calculation engine. IronPython enables the execution of these Python (CSFs) directly within Excel. C# and VSTO add-ins form the core components, facilitating communication between Python and Excel. This approach empowers users with a potentially open-ended set of Python (CSFs) for tasks like mathematical calculations, statistical analysis, and even predictive modeling, all within the familiar Excel interface. This prototype demonstrates smooth integration, allowing users to call Python (CSFs) just like standard Excel functions. This research contributes to enhancing spreadsheet capabilities for end-user programmers by leveraging Python’s power within Excel. Future research could explore expanding data analysis capabilities by expanding the (CSFs) functions for complex calculations, statistical analysis, data manipulation, and even external library integration. The possibility of integrating machine learning models through the (CSFs) functions within the familiar Excel environment.展开更多
In the digital era,retailers are keen to find out whether omni-channel retailing helps improve long-term firm performance.In this paper,we employ machine learning techniques on a large consumption data set in order to...In the digital era,retailers are keen to find out whether omni-channel retailing helps improve long-term firm performance.In this paper,we employ machine learning techniques on a large consumption data set in order to measure customer lifetime value(CLV)as the basis for determining long-term firm performance,and we provide an empirical analysis of the relationship between omni-channel retailing and CLV.The results suggest that omni-channel retailing may effectively enhance CLV.Further analysis reveals that this process is influenced by heterogeneous consumer requirements and that significant differences exist in the extent to which the omni-channel transition may influence CLV depending on consumer preferences for diversity of commodities,sensitivity to the cost of contract performance,and sensitivity to warehousing costs.Hence,retailers should provide consumers with a complete portfolio of goods and services based on target consumers’heterogeneous requirements in order to increase omni-channel efficiency.展开更多
文摘To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers to represent the importance of each demand.Then,the preference information is aggregated using customer weights and time period weights through the intuitionistic fuzzy ordered weighted average operator,yielding a dynamic vector of the subjective importance of the demand index.Finally,the feasibility of the proposed method is demonstrated through an application example of a vibrating sorting screen.
基金Yunnan Provincial Department of Education Scientific Research Fund Project“Construction and Development of‘Loose-Leaf’Teaching Material Resources for Landscape Engineering Vocational Education”(Project number:2022J1725)。
文摘Currently,talent training in Chinese universities for landscape architecture is mainly divided into three directions:“landscape planning and design,”“landscape construction management,”and“landscape plant planting and maintenance.”However,with the background of the slowing urbanization process and the widespread demand for composite talents in society,it remains to be verified whether the traditional three major talent training directions in landscape architecture align with the job demands in the current construction market.Based on a survey and analysis of over 300 industry practitioners,this study found a clear trend of merging the three major employment directions into“landscape design and construction”and“landscape plant planting and maintenance.”This presents new requirements and directions for the skill training of landscape architecture majors in universities and provides insights into the alignment between talent training and employment demands in other industries.
文摘Objective:To identify the group classification of discharged older adults’digital transition care demands and analyze its influencing factors.Methods:From July to August 2022,we used stratified random sampling to recruit older patients who were discharged between July 2021 and July 2022 from tertiary hospitals in Shanghai.We used latent profile analysis to classify the older patients into distinct groups based on their service demands:low,medium,and high.We use multiple logistic regression to explore the factors influencing the different demand levels.Results:The degree of discharged older patients’demand was classified as low(Category 1(C1),34.2%),medium(Category 2(C2),49.5%),high-demand levels(Category 3(C3),16.3%).Compared to those have C2,older adults in C1 are more likely to be male(Odds Ratio(OR)=2.81,P=0.02),have 2 chronic diseases(OR=3.91,P=0.03),and are less likely to be junior high and below(OR=0.09,P=0.00),hospitalized for 1–2 times in the past year(1 times:OR=0.19,P=0.07;2 times:OR=0.14,P=0.02),living with children(OR=0.32,P=0.05),have less insurance(OR=0.48,P=0.03),less understanding of digital transitional care(OR=0.47,P=0.01),have less eHealth literacy(OR=0.80,P=0.00),have less degree of importance attributed by family(OR=0.52,P=0.03);Compared to those have medium demand level,older adults in high demand level are more likely to have self and spouse as primary income(self:OR=26.35,P=0.00;spouse:OR=24.06,P=0.02),walking to the nearest health facility(self:6.74,P=0.03),have higher eHealth literacy(OR=1.88,P=0.00),degree of importance within the family(OR=5.19,P=0.01),higher self’s influence on medical decisions-making(OR=5.69.P=0.01).They are less likely to be in 60–79 years group(OR=0.00–0.37,P=0.00–0.03),Household Annual Income<5,000 CNY(OR=0.05,P=0.02).Conclusion:Digital transitional care demands of discharged older patients can be divided into three categories.Constructing a digital transitional care service system that aligns with the demands of discharged older patients is essential.Communication,care plan development,and follow-up are the most fundamental services.Additionally,it is essential to understand the characteristics of high-demand populations to provide tailored services and identify vulnerable populations from health and social perspectives to offer cost-effective transitional care services.
文摘Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.
文摘In order to improve the satisfaction degree of customers’individual demands for products and reduce the risk of the product innovation,the characteristics of customer demands for product innovation are analyzed,and the type and content of customer demands are discussed.Then the framework of customer demands acquisition for product innovation is established.Final- ly,the prototype system of customer demands information acquisition and product customization for product innovation which takes mobile phone as the example is developed successfully.
基金Funded by National Science Foundation of China(E05 50335020)
文摘In order to improve the satisfaction degree of customers’ individual demands on products and reduce the risk of the product innovation,the characteristics of customer demands for product innovation are analyzed,and their type and content are discussed. Then the framework of customer demands acquisition for product innovation is established. Finally,the prototype system of customer demands information acquisition and product customization for product innovation which takes mobile phone as the example is developed successfully.
文摘Purpose–Facing the diverse needs of large-scale customers,based on available railway service resources and service capabilities,this paper aims to research the design method of railway freight service portfolio,select optimal service solutions and provide customers with comprehensive and customized freight services.Design/methodology/approach–Based on the characteristics of railway freight services throughout the entire process,the service system is decomposed into independent units of service functions,and a railway freight service combination model is constructed with the goal of minimizing response time,service cost and service time.A model solving algorithm based on adaptive genetic algorithm is proposed.Findings–Using the computational model,an empirical analysis was conducted on the entire process freight service plan for starch sold from Xi’an to Chengdu as an example.The results showed that the proposed optimization model and algorithm can effectively guide the design of freight plans and provide technical support for real-time response to customers’diversified entire process freight service needs.Originality/value–With the continuous optimization and upgrading of railway freight source structure,customer demands are becoming increasingly diverse and personalized.Studying and designing a reasonable railway freight service plan throughout the entire process is of great significance for timely response to customer needs,improving service efficiency and reducing design costs.
基金the National Natural Science Foundation of China Youth Fund,Research on Security Low Carbon Collaborative Situation Awareness of Comprehensive Energy System from the Perspective of Dynamic Security Domain(52307130).
文摘To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes.
基金supported by the Surface Project of the National Natural Science Foundation of China(No.71273024)the Fundamental Research Funds for the Central Universities of China(2021YJS080).
文摘This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
基金supported by the Basic Science(Natural Science)Research Project of Jiangsu Higher Education Institutions(No.23KJB470020)the Natural Science Foundation of Jiangsu Province(Youth Fund)(No.BK20230384)。
文摘To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance.
文摘Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling.
基金the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD22XYS04).
文摘Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.
文摘Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.
文摘In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China (J2022160,Research on Key Technologies of Distributed Power Dispatching Control for Resilience Improvement of Distribution Networks).
文摘To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost.
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
文摘End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data analysis. However, Excel functionalities have limits compared to dedicated programming languages. This paper addresses this gap by proposing a prototype for integrating Python’s capabilities into Excel through on-premises desktop to build custom spreadsheet functions with Python. This approach overcomes potential latency issues associated with cloud-based solutions. This prototype utilizes Excel-DNA and IronPython. Excel-DNA allows creating custom Python functions that seamlessly integrate with Excel’s calculation engine. IronPython enables the execution of these Python (CSFs) directly within Excel. C# and VSTO add-ins form the core components, facilitating communication between Python and Excel. This approach empowers users with a potentially open-ended set of Python (CSFs) for tasks like mathematical calculations, statistical analysis, and even predictive modeling, all within the familiar Excel interface. This prototype demonstrates smooth integration, allowing users to call Python (CSFs) just like standard Excel functions. This research contributes to enhancing spreadsheet capabilities for end-user programmers by leveraging Python’s power within Excel. Future research could explore expanding data analysis capabilities by expanding the (CSFs) functions for complex calculations, statistical analysis, data manipulation, and even external library integration. The possibility of integrating machine learning models through the (CSFs) functions within the familiar Excel environment.
基金the National Social Science Foundation of China(NSSFC)“Study on the Digital Transition of China’s Retail Business”(Grant No.18BJY176).
文摘In the digital era,retailers are keen to find out whether omni-channel retailing helps improve long-term firm performance.In this paper,we employ machine learning techniques on a large consumption data set in order to measure customer lifetime value(CLV)as the basis for determining long-term firm performance,and we provide an empirical analysis of the relationship between omni-channel retailing and CLV.The results suggest that omni-channel retailing may effectively enhance CLV.Further analysis reveals that this process is influenced by heterogeneous consumer requirements and that significant differences exist in the extent to which the omni-channel transition may influence CLV depending on consumer preferences for diversity of commodities,sensitivity to the cost of contract performance,and sensitivity to warehousing costs.Hence,retailers should provide consumers with a complete portfolio of goods and services based on target consumers’heterogeneous requirements in order to increase omni-channel efficiency.