This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted...This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted where the drilling rate-of-penetration(ROP) was measured at a series of step-wise increasing static bit thrusts or weight-on-bits(WOBs). Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission(AE) system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT(linear variable differential transformer) recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP.展开更多
Sweet potato is an important food crop which contributes to food security. Storage roots are stored in the ground and harvested when needed. In coastal Kenya, the production of the crop is limited by lack of adaptable...Sweet potato is an important food crop which contributes to food security. Storage roots are stored in the ground and harvested when needed. In coastal Kenya, the production of the crop is limited by lack of adaptable varieties and shortage of planting materials at the onset of long rains. The prevailing prices of sweet potato vines for planting present a hindrance for sweet potato cultivation culminating to low acreages by farmers. This study was carried out during the long rains of 2011 to 2013 to determine the effect of variety and size of sweet potato cutting on root yield. Four sweet potato varieties were planted under four stem cutting sizes of four, six, eight and 10 nodes. The four varieties were K135, Bungoma, SPK004 and Mtwapa 8 (check). The experimental design was a split plot with varieties assigned to main plots and cutting sizes to sub-plots. The number of roots per plant for Bungoma variety was significantly (P 〈 0.05) less than that for the check, and variety K135 showed significantly (P 〈 0.05) higher number of marketable root per plant than the check. The same trend was observed for root yield per hectare. The check variety had the highest percent of dry matter and was significantly higher than that of SPK004 and Bungoma varieties. There were no significant (P 〈 0.05) differences among the stem cutting sizes as regards to number of roots per plant, number of marketable root per plant and percent of dry matter. The cutting size of six nodes gave similar root yield as the recommended eight nodes, and therefore farmers can adopt shorter vines than the recommended, hence saving on the cost of planting materials.展开更多
Severely deformed coal seams barely deliver satisfactory gas production. This research was undertaken to develop a new method to predict the positions of deformed coals for a horizontal CBM well. Firstly, the drilling...Severely deformed coal seams barely deliver satisfactory gas production. This research was undertaken to develop a new method to predict the positions of deformed coals for a horizontal CBM well. Firstly, the drilling cuttings of different structure coals were collected from a coal mine and compared. In light of the varying cuttings characteristics for different structure coals, the coal structure of the horizontally drilled coal seam was predicted. And the feasibility of this prediction method was discussed. The result shows that exogenetic fractures have an important influence on the deformation of coal seams. The hardness coefficient of coal decreases with the deformation degree in the order of primary structural, cataclastic and fragmented coal. And the expanding-ratio of gas drainage holes and the average particle size of cuttings increase with the increase of the deformation degree. The particle size distribution of coal cuttings for the three types of coals is distinctive from each other. Based on the particle size distribution of cuttings from X-2 well in a coal seam, six sections of fragmented coal which are unsuitable for perforating are predicted. This method may benefit the optimization of perforation and fracturing of a horizontal CBM well in the study area.展开更多
We consider the problem of distributing the stress-strain state (SSS) characteristics in the body arbitrarily loaded on the outer surface and weakened by a physical cut with a thickness of δ0. It is assumed that δ0 ...We consider the problem of distributing the stress-strain state (SSS) characteristics in the body arbitrarily loaded on the outer surface and weakened by a physical cut with a thickness of δ0. It is assumed that δ0 parameter is the smallest possible size permitting the use of the hypothesis of continuity. The continuation of the physical cut divides the body into two parts interacting with one another by means of a contact with δ-layer. Due to constant average stresses and strains over the layer thickness, the problem reduces to the system of variational equations for the displacement fields in the adjacent bodies. The geometry of the bodies under consideration has no singular points and, as a consequence, has no singularity of stresses. The use of average characteristics makes it possible to disregard a form of the physical cut end. The obtained solution can be used for processing of experimental data in order to establish the continuity scale δ0. The entered structure parameter for silicate glass is assessed using known mechanical characteristics.展开更多
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plast...There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.展开更多
基金funded by Atlantic Canada Opportunity Agency (AIF contract number: 7812636-1920044)
文摘This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted where the drilling rate-of-penetration(ROP) was measured at a series of step-wise increasing static bit thrusts or weight-on-bits(WOBs). Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission(AE) system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT(linear variable differential transformer) recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP.
文摘Sweet potato is an important food crop which contributes to food security. Storage roots are stored in the ground and harvested when needed. In coastal Kenya, the production of the crop is limited by lack of adaptable varieties and shortage of planting materials at the onset of long rains. The prevailing prices of sweet potato vines for planting present a hindrance for sweet potato cultivation culminating to low acreages by farmers. This study was carried out during the long rains of 2011 to 2013 to determine the effect of variety and size of sweet potato cutting on root yield. Four sweet potato varieties were planted under four stem cutting sizes of four, six, eight and 10 nodes. The four varieties were K135, Bungoma, SPK004 and Mtwapa 8 (check). The experimental design was a split plot with varieties assigned to main plots and cutting sizes to sub-plots. The number of roots per plant for Bungoma variety was significantly (P 〈 0.05) less than that for the check, and variety K135 showed significantly (P 〈 0.05) higher number of marketable root per plant than the check. The same trend was observed for root yield per hectare. The check variety had the highest percent of dry matter and was significantly higher than that of SPK004 and Bungoma varieties. There were no significant (P 〈 0.05) differences among the stem cutting sizes as regards to number of roots per plant, number of marketable root per plant and percent of dry matter. The cutting size of six nodes gave similar root yield as the recommended eight nodes, and therefore farmers can adopt shorter vines than the recommended, hence saving on the cost of planting materials.
基金funded by National Science and Technology Major Project of China (No. 2016ZX05067001-007)Shanxi Coalbased Scientific and Technological Key Project of China (No. MQ2014-04)+1 种基金Shanxi Provincial Basic Research Program-Coal Bed Methane Joint Research Foundation (No. 2015012014)Opening Foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences) Ministry of Education (No. TPR-2017-18)
文摘Severely deformed coal seams barely deliver satisfactory gas production. This research was undertaken to develop a new method to predict the positions of deformed coals for a horizontal CBM well. Firstly, the drilling cuttings of different structure coals were collected from a coal mine and compared. In light of the varying cuttings characteristics for different structure coals, the coal structure of the horizontally drilled coal seam was predicted. And the feasibility of this prediction method was discussed. The result shows that exogenetic fractures have an important influence on the deformation of coal seams. The hardness coefficient of coal decreases with the deformation degree in the order of primary structural, cataclastic and fragmented coal. And the expanding-ratio of gas drainage holes and the average particle size of cuttings increase with the increase of the deformation degree. The particle size distribution of coal cuttings for the three types of coals is distinctive from each other. Based on the particle size distribution of cuttings from X-2 well in a coal seam, six sections of fragmented coal which are unsuitable for perforating are predicted. This method may benefit the optimization of perforation and fracturing of a horizontal CBM well in the study area.
文摘We consider the problem of distributing the stress-strain state (SSS) characteristics in the body arbitrarily loaded on the outer surface and weakened by a physical cut with a thickness of δ0. It is assumed that δ0 parameter is the smallest possible size permitting the use of the hypothesis of continuity. The continuation of the physical cut divides the body into two parts interacting with one another by means of a contact with δ-layer. Due to constant average stresses and strains over the layer thickness, the problem reduces to the system of variational equations for the displacement fields in the adjacent bodies. The geometry of the bodies under consideration has no singular points and, as a consequence, has no singularity of stresses. The use of average characteristics makes it possible to disregard a form of the physical cut end. The obtained solution can be used for processing of experimental data in order to establish the continuity scale δ0. The entered structure parameter for silicate glass is assessed using known mechanical characteristics.
基金the Research Committee of The Hong Kong Polytechnic University and the Innovation Technology Commission of The Hong Kong SAR Government for their financial support of the Hong Kong Partner State Key Laboratory of Ultra-Precision Machining Technology
文摘There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.