Forage soybean is an important source of high protein forage.Variety screening and breeding not only can solve the adjustment of agricultural planting structure,but also can provide a large amount of high-protein fora...Forage soybean is an important source of high protein forage.Variety screening and breeding not only can solve the adjustment of agricultural planting structure,but also can provide a large amount of high-protein forage material,and effectively solve the problem of a serious shortage of high-protein forage in herbivorous animal husbandry in China.In this study,the feeding-type soybean strain HN389 was selected as experimental material,with three planting densities of 270000,405000 and 540000 plants•hm^(-2) and three cutting periods of the initial pod stage(R1),the initial grain stage(R2)and the early mature stage(R3)were set to determine the yield and feeding quality,in order to obtain the best planting density and harvest time of the variety.The results showed that in forage soybean strain HN389 at the R1 and R2 stages,plant height increased with increasing planting densities,while fresh and dry weight per plant decreased with increasing planting densities,and there was no significant difference at the R3 stage.The yield of hay at the R1,R2 and R3 stages increased firstly and then decreased with the increase of planting densities,and the yield per hectare was R3>R2>R1.The order of contents of crude protein(CP),neutral detergent fibers(NDF)and acid detergent fiber(ADF)in feeding quality of HN389 were R2>R1>R3,and ether extract(EE)content order was R3>R1>R2,and there was no significant difference among different groups.Two principal components were extracted from five forage indexes including CP,NDF,ADF,EE and fresh grass yield by principal component analysis.The cumulative contribution rate of principal components 1 and 2 was 90.053%,and their characteristic values were 3.617 and 0.885,respectively.After a comprehensive evaluation,harvested at the R3 stage and the density was 405000 plants•hm^(-2),HN389 had the highest comprehensive score of 0.344,yield of 38035.53 kg•hm^(-2),CP,NDF,ADF and EE contents of 17.61%,17.61%,21.54%and 3.81%,respectively.展开更多
The system dynamics of turning processes can be described by a delay differential equation. How to improve the stability and suppress the vibration of cutting is of an interesting topic. In this paper, a multiple time...The system dynamics of turning processes can be described by a delay differential equation. How to improve the stability and suppress the vibration of cutting is of an interesting topic. In this paper, a multiple time-delay controller is developed based on discrete optimal control method for the turning vibrations control. Numerical simulations are carried out to verify the efficiency of the controller. Results indicate the designed controller can suppress the cutting vibration efficiently and improve the stability of the cutting processes. The influence of designed time-delay and sampling time on the control performance is also discussed.展开更多
In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method ...In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.展开更多
A field experiment with 24 treatments consisting of three perennial forage crops [alfalfa (<em>Medicago sativa</em> L. cv. AC Longview), hybrid bromegrass (<em>Bromus riparius</em> Rehm & &...A field experiment with 24 treatments consisting of three perennial forage crops [alfalfa (<em>Medicago sativa</em> L. cv. AC Longview), hybrid bromegrass (<em>Bromus riparius</em> Rehm & <em>Bromus inermis</em> Leyss. cv. AC Success) and their mixture], four Cut 1 dates (approximately June 20, July 10, July 30 or August 20), and two fertilizer levels (unfertilized and fertilized) was established in late May 2014, on a Black Chernozem [Udic Boroll] silty clay soil. Forage dry matter yield [DMY], and concentration (g<span style="white-space:nowrap;">·</span>kg<sup><span style="white-space:nowrap;">−</span>1</sup> DM) of crude protein [CP], total digestible nutrients [TDN] and acid detergent fiber [ADF] data were collected over 3 years from 2015 to 2017. The fertilizer treatments were imposed in 2016 and 2017. Forage crops were initially cut at four Cut 1 dates, and again cut [Cut 2] in autumn (September 2 in 2015, November 7 in 2016 and October 5 in 2017). For all three forage crops, forage DMY usually increased when Cut 1 was delayed. Delaying Cut 1 reduced forage DMY for Cut 2. Total DMY (Cut 1 + Cut 2) for all three forage crops was highest from the combination of July 10 and late Autumn cuts. Alfalfa-bromegrass mixture produced higher DMY than bromegrass or alfalfa alone. Fertilizer application resulted in a significant increase in Cut 1 and total DMY for bromegrass. The CP concentration in Cut 1 forage usually declined as the forage crops matured. The CP concentration was highest for alfalfa, followed by alfalfa-bromegrass mixture, and much lower for bromegrass. There was little or no effect of forage crop maturity on the TDN and ADF concentrations in forage. The TDN concentration was higher and ADF concentration was lower in forage from alfalfa or alfalfa-bromegrass mixture than bromegrass. Fertilizer application significantly increased CP concentration for alfalfa-bromegrass mixture. Delaying harvesting for Cut 1 increased ADF yield and TDN yield until Late July, but CP yield generally decreased with crop maturity. The ADF yield and TDN yield were higher for alfalfa-bromegrass mixture than bromegrass or alfalfa alone, and CP yield was similar for alfalfa and alfalfa-bromegrass mixture but considerably higher than bromegrass. Fertilizer application increased CP yield and ADF yield for bromegrass and alfalfa-bromegrass mixture, and TDN yield only for bromegrass. In conclusion, total DMY (Cut 1 + Cut 2) was highest for a combination of Early July and Autumn cuts. Forage yield was highest for alfalfa-bromegrass mixture, followed by alfalfa and lowest for bromegrass. The CP and TDN concentrations were higher, and ADF concentrations were lower in forage from alfalfa or alfalfa-bromegrass mixture than bromegrass.展开更多
The study aims to promote the off-season cut roses industry in Hainan Province to the whole island and even whole China. Based on the production data in latest three years,the theory of time value was introduced to an...The study aims to promote the off-season cut roses industry in Hainan Province to the whole island and even whole China. Based on the production data in latest three years,the theory of time value was introduced to analyze the economic benefits of cut roses planting in South Hainan. According to the research findings,the cut roses create a NPV of $22 000 /667m2 with a net NPV rate of 34. 24%,an internal rate of return of 76. 36%,and a dynamic payback of 1. 05,bringing the farmers a revenue of $7 200 /667m2 per capita per year. Since the largescale planting of cut roses needs a high investment,it is suggested that the government should increase its support for the cut rose industry.展开更多
Time domain averaging(TDA) is essentially a comb filter,it cannot extract the specified harmonics which may be caused by some faults,such as gear eccentric.Meanwhile,TDA always suffers from period cutting error(PCE) t...Time domain averaging(TDA) is essentially a comb filter,it cannot extract the specified harmonics which may be caused by some faults,such as gear eccentric.Meanwhile,TDA always suffers from period cutting error(PCE) to different extent.Several improved TDA methods have been proposed,however they cannot completely eliminate the waveform reconstruction error caused by PCE.In order to overcome the shortcomings of conventional methods,a flexible time domain averaging(FTDA) technique is established,which adapts to the analyzed signal through adjusting each harmonic of the comb filter.In this technique,the explicit form of FTDA is first constructed by frequency domain sampling.Subsequently,chirp Z-transform(CZT) is employed in the algorithm of FTDA,which can improve the calculating efficiency significantly.Since the signal is reconstructed in the continuous time domain,there is no PCE in the FTDA.To validate the effectiveness of FTDA in the signal de-noising,interpolation and harmonic reconstruction,a simulated multi-components periodic signal that corrupted by noise is processed by FTDA.The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively.Moreover,it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones.Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear,respectively.It is shown that the FTDA can identify the direction and severity of the eccentricity gear,and further enhances the amplitudes of impulses by 35%.The proposed technique not only solves the problem of PCE,but also provides a useful tool for the fault symptom extraction of rotating machinery.展开更多
Lotus tenuis forage yield has been quantified under defoliation conditions in pastures, grasslands and under dual-purpose production of both livestock forage and seeds. However, little is known about the effects of de...Lotus tenuis forage yield has been quantified under defoliation conditions in pastures, grasslands and under dual-purpose production of both livestock forage and seeds. However, little is known about the effects of defoliation management on L. tenuis flower and pod production and subsequent seed yield. Two field experiments were conducted to study the response of L. tenuis to defoliation at different flowering stages and intensities. In Experiment 1, crops were defoliated at the beginning of the flowering (DBF), mid-flowering (DMF) or full flowering (DFF). In Experiment 2, defoliation was in vegetative stage at low (LDI) or high (HDI) intensities. Defoliation in Experiment 1 neither affected plant cover nor the photosynthetically active radiation intercepted by the crop during pod production. There were less umbels with dehiscent (shattered) pods in the DFF treatment than in Control, DBF and DMF treatments. Flower peak occurred first in the Control, DBF and DMF treatments, and eight days later in DFF plots, however, seed yield was not affected (1324 ± 32.8 kg·ha<sup>-1</sup>). Defoliation intensity did not affect seed yield (962 ± 25.9 kg·ha<sup>-</sup><sup>1</sup>) because of self-compensation which increased harvest index in HDI (14.5% ± 0.6%) compared to the Control and LDI (12.0% ± 0.3%) treatments. Plant survival was not affected by defoliation treatments in any of the experiments. Flowering can be synchronized through defoliation. The blooming of large numbers of flowers in a short time was achieved, reducing the number of shattered pods. Compensatory responses through plant plasticity conferred L. tenuis the ability to overcome defoliation without affecting seed yield. Lotus tenuis defoliation as management tool will be considered in future researches because it is possible to harvest forage and to increase seed yield through a reduction of shattered pods.展开更多
In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring...In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.展开更多
In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfiel...In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfield as the target area, the variation law of water cut and recovery factor of different injection parameters was analyzed, and the optimization research of injection parameters of polymer enhanced foam flooding was carried out. The results show that the higher the injection rate, the lower the water content curve, and the higher the oil recovery rate. As the foam defoamed when encountering oil, when the injection time was earlier than 80% of water cut, the later the injection time was, the better the oil displacement effect would be. When the injection time was later than 80% of water cut, the later the injection time was, the worse the oil displacement effect would be. The larger the injection volume, the lower the water content curve and the higher the recovery rate. After the injection volume exceeded 0.2 PV, the amplitude of changes in water content and recovery rate slowed down. The optimal injection parameters of profile control agent for high water content well group in Oilfield A were: injection rate of 15 m<sup>3</sup>/d, injection timing of 80% water content, and injection volume of 0.2 PV.展开更多
基金Supported by Fund of Popularization and Demonstration of Mixed Sowing of Forage Beans and Silage Corn to Improve Green Feeding Quality of Dairy Cows(2015RQXXJ013)。
文摘Forage soybean is an important source of high protein forage.Variety screening and breeding not only can solve the adjustment of agricultural planting structure,but also can provide a large amount of high-protein forage material,and effectively solve the problem of a serious shortage of high-protein forage in herbivorous animal husbandry in China.In this study,the feeding-type soybean strain HN389 was selected as experimental material,with three planting densities of 270000,405000 and 540000 plants•hm^(-2) and three cutting periods of the initial pod stage(R1),the initial grain stage(R2)and the early mature stage(R3)were set to determine the yield and feeding quality,in order to obtain the best planting density and harvest time of the variety.The results showed that in forage soybean strain HN389 at the R1 and R2 stages,plant height increased with increasing planting densities,while fresh and dry weight per plant decreased with increasing planting densities,and there was no significant difference at the R3 stage.The yield of hay at the R1,R2 and R3 stages increased firstly and then decreased with the increase of planting densities,and the yield per hectare was R3>R2>R1.The order of contents of crude protein(CP),neutral detergent fibers(NDF)and acid detergent fiber(ADF)in feeding quality of HN389 were R2>R1>R3,and ether extract(EE)content order was R3>R1>R2,and there was no significant difference among different groups.Two principal components were extracted from five forage indexes including CP,NDF,ADF,EE and fresh grass yield by principal component analysis.The cumulative contribution rate of principal components 1 and 2 was 90.053%,and their characteristic values were 3.617 and 0.885,respectively.After a comprehensive evaluation,harvested at the R3 stage and the density was 405000 plants•hm^(-2),HN389 had the highest comprehensive score of 0.344,yield of 38035.53 kg•hm^(-2),CP,NDF,ADF and EE contents of 17.61%,17.61%,21.54%and 3.81%,respectively.
基金supported by the National Natural Science Foundation of China(11172167)the Major State Basic Research Development Program of China(2011CB706803)
文摘The system dynamics of turning processes can be described by a delay differential equation. How to improve the stability and suppress the vibration of cutting is of an interesting topic. In this paper, a multiple time-delay controller is developed based on discrete optimal control method for the turning vibrations control. Numerical simulations are carried out to verify the efficiency of the controller. Results indicate the designed controller can suppress the cutting vibration efficiently and improve the stability of the cutting processes. The influence of designed time-delay and sampling time on the control performance is also discussed.
基金National Key Technologies R&D Program (2006BA103A16)Fundamental Research Project of COSTIND (K1203020507, B2120061326)
文摘In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.
文摘A field experiment with 24 treatments consisting of three perennial forage crops [alfalfa (<em>Medicago sativa</em> L. cv. AC Longview), hybrid bromegrass (<em>Bromus riparius</em> Rehm & <em>Bromus inermis</em> Leyss. cv. AC Success) and their mixture], four Cut 1 dates (approximately June 20, July 10, July 30 or August 20), and two fertilizer levels (unfertilized and fertilized) was established in late May 2014, on a Black Chernozem [Udic Boroll] silty clay soil. Forage dry matter yield [DMY], and concentration (g<span style="white-space:nowrap;">·</span>kg<sup><span style="white-space:nowrap;">−</span>1</sup> DM) of crude protein [CP], total digestible nutrients [TDN] and acid detergent fiber [ADF] data were collected over 3 years from 2015 to 2017. The fertilizer treatments were imposed in 2016 and 2017. Forage crops were initially cut at four Cut 1 dates, and again cut [Cut 2] in autumn (September 2 in 2015, November 7 in 2016 and October 5 in 2017). For all three forage crops, forage DMY usually increased when Cut 1 was delayed. Delaying Cut 1 reduced forage DMY for Cut 2. Total DMY (Cut 1 + Cut 2) for all three forage crops was highest from the combination of July 10 and late Autumn cuts. Alfalfa-bromegrass mixture produced higher DMY than bromegrass or alfalfa alone. Fertilizer application resulted in a significant increase in Cut 1 and total DMY for bromegrass. The CP concentration in Cut 1 forage usually declined as the forage crops matured. The CP concentration was highest for alfalfa, followed by alfalfa-bromegrass mixture, and much lower for bromegrass. There was little or no effect of forage crop maturity on the TDN and ADF concentrations in forage. The TDN concentration was higher and ADF concentration was lower in forage from alfalfa or alfalfa-bromegrass mixture than bromegrass. Fertilizer application significantly increased CP concentration for alfalfa-bromegrass mixture. Delaying harvesting for Cut 1 increased ADF yield and TDN yield until Late July, but CP yield generally decreased with crop maturity. The ADF yield and TDN yield were higher for alfalfa-bromegrass mixture than bromegrass or alfalfa alone, and CP yield was similar for alfalfa and alfalfa-bromegrass mixture but considerably higher than bromegrass. Fertilizer application increased CP yield and ADF yield for bromegrass and alfalfa-bromegrass mixture, and TDN yield only for bromegrass. In conclusion, total DMY (Cut 1 + Cut 2) was highest for a combination of Early July and Autumn cuts. Forage yield was highest for alfalfa-bromegrass mixture, followed by alfalfa and lowest for bromegrass. The CP and TDN concentrations were higher, and ADF concentrations were lower in forage from alfalfa or alfalfa-bromegrass mixture than bromegrass.
基金Supported by the National Spark Plan(2011GA800004)
文摘The study aims to promote the off-season cut roses industry in Hainan Province to the whole island and even whole China. Based on the production data in latest three years,the theory of time value was introduced to analyze the economic benefits of cut roses planting in South Hainan. According to the research findings,the cut roses create a NPV of $22 000 /667m2 with a net NPV rate of 34. 24%,an internal rate of return of 76. 36%,and a dynamic payback of 1. 05,bringing the farmers a revenue of $7 200 /667m2 per capita per year. Since the largescale planting of cut roses needs a high investment,it is suggested that the government should increase its support for the cut rose industry.
基金supported by National Natural Science Foundation of China(Grant Nos.5112502251005173)+1 种基金PhD Programs Foundation of Ministry of Education of China(Grant No.20110201110025)the Fundamental Research Funds for the Central Universities of China
文摘Time domain averaging(TDA) is essentially a comb filter,it cannot extract the specified harmonics which may be caused by some faults,such as gear eccentric.Meanwhile,TDA always suffers from period cutting error(PCE) to different extent.Several improved TDA methods have been proposed,however they cannot completely eliminate the waveform reconstruction error caused by PCE.In order to overcome the shortcomings of conventional methods,a flexible time domain averaging(FTDA) technique is established,which adapts to the analyzed signal through adjusting each harmonic of the comb filter.In this technique,the explicit form of FTDA is first constructed by frequency domain sampling.Subsequently,chirp Z-transform(CZT) is employed in the algorithm of FTDA,which can improve the calculating efficiency significantly.Since the signal is reconstructed in the continuous time domain,there is no PCE in the FTDA.To validate the effectiveness of FTDA in the signal de-noising,interpolation and harmonic reconstruction,a simulated multi-components periodic signal that corrupted by noise is processed by FTDA.The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively.Moreover,it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones.Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear,respectively.It is shown that the FTDA can identify the direction and severity of the eccentricity gear,and further enhances the amplitudes of impulses by 35%.The proposed technique not only solves the problem of PCE,but also provides a useful tool for the fault symptom extraction of rotating machinery.
文摘Lotus tenuis forage yield has been quantified under defoliation conditions in pastures, grasslands and under dual-purpose production of both livestock forage and seeds. However, little is known about the effects of defoliation management on L. tenuis flower and pod production and subsequent seed yield. Two field experiments were conducted to study the response of L. tenuis to defoliation at different flowering stages and intensities. In Experiment 1, crops were defoliated at the beginning of the flowering (DBF), mid-flowering (DMF) or full flowering (DFF). In Experiment 2, defoliation was in vegetative stage at low (LDI) or high (HDI) intensities. Defoliation in Experiment 1 neither affected plant cover nor the photosynthetically active radiation intercepted by the crop during pod production. There were less umbels with dehiscent (shattered) pods in the DFF treatment than in Control, DBF and DMF treatments. Flower peak occurred first in the Control, DBF and DMF treatments, and eight days later in DFF plots, however, seed yield was not affected (1324 ± 32.8 kg·ha<sup>-1</sup>). Defoliation intensity did not affect seed yield (962 ± 25.9 kg·ha<sup>-</sup><sup>1</sup>) because of self-compensation which increased harvest index in HDI (14.5% ± 0.6%) compared to the Control and LDI (12.0% ± 0.3%) treatments. Plant survival was not affected by defoliation treatments in any of the experiments. Flowering can be synchronized through defoliation. The blooming of large numbers of flowers in a short time was achieved, reducing the number of shattered pods. Compensatory responses through plant plasticity conferred L. tenuis the ability to overcome defoliation without affecting seed yield. Lotus tenuis defoliation as management tool will be considered in future researches because it is possible to harvest forage and to increase seed yield through a reduction of shattered pods.
基金supported by National Natural Science Foundation of China(Grant No.50775210)Liaoning Provincial Natural Science Foundation of China(Grant No.20062143)Liaoning Provincial Universities Science and Technology Program of China(Grant No.05L023)
文摘In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.
文摘In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfield as the target area, the variation law of water cut and recovery factor of different injection parameters was analyzed, and the optimization research of injection parameters of polymer enhanced foam flooding was carried out. The results show that the higher the injection rate, the lower the water content curve, and the higher the oil recovery rate. As the foam defoamed when encountering oil, when the injection time was earlier than 80% of water cut, the later the injection time was, the better the oil displacement effect would be. When the injection time was later than 80% of water cut, the later the injection time was, the worse the oil displacement effect would be. The larger the injection volume, the lower the water content curve and the higher the recovery rate. After the injection volume exceeded 0.2 PV, the amplitude of changes in water content and recovery rate slowed down. The optimal injection parameters of profile control agent for high water content well group in Oilfield A were: injection rate of 15 m<sup>3</sup>/d, injection timing of 80% water content, and injection volume of 0.2 PV.