The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the...The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.展开更多
To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based ...To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.展开更多
Active control of the local environment of the cold atmospheric plasma(CAP) jet is of great importance in actual applications since the CAP operates in an open atmosphere with the inevitable entrainment of the surroun...Active control of the local environment of the cold atmospheric plasma(CAP) jet is of great importance in actual applications since the CAP operates in an open atmosphere with the inevitable entrainment of the surrounding cold air. In this paper, the solid shielding effects of the cylindrical quartz tubes with different inner diameters on the characteristics of the CAP jets driven by a radio-frequency(RF) power supply are studied experimentally. The experimental results show that the total length of the shielded plasma jet can be increased significantly by an appropriate combination of the quartz tube inner diameter and that of the plasma generator nozzle exit with other parameters being unchanged. This phenomenon may be qualitatively attributed to the loss of diffusion of the charged particles in the radial direction under different inner diameters of the quartz tubes. Compared with the plasma free jet, the plasma shielding jet is produced with optimized parameters including longer plasma jet length, higher concentrations of chemically reactive species, higher rotational, vibrational, and electron excitation temperatures when the inner diameters of the solid shielding tube and the generator nozzle exit are the same. A maximum plasma jet length of 52.0 cm is obtained in contrast to that of 5.0 cm of the plasma free jet in this study. The experimental results indicate that the solid shielding effect provides a new method for the active control of the local environment of the RF-CAP jet operating in an open atmosphere.展开更多
This article presents some new experimental data for study the shielding effect of electromagnetic wave. The frequencies of electromagnetic wave are mainly focused on emission of daily electrical equipments, which are...This article presents some new experimental data for study the shielding effect of electromagnetic wave. The frequencies of electromagnetic wave are mainly focused on emission of daily electrical equipments, which are normally called “low frequency electromagnetic waves”. In this work, a water pump with maximum magnetic field intensity of ca. 2300 mG was applied as emission source of the electromagnetic wave. Experimental measurements used various shielding materials with the major constituent iron (Fe) in the form of plate for studying shielding effect of electromagnetic wave. The studied parameters were different thicknesses and gaps of the plate. The results show that pure iron plate has the best effect for shielding the magnetic field and its transmission ratio of magnetic field is proportional to distance between the emission source and the shielding plate. Moreover, the shielding plate close to the emission source received better protection.展开更多
The authors state briefly the possibility of various simulators to handle propagation of electromagnetic waves along some interconnections, in 3D RF (Radio Frequency) circuits. The studies are first derived in the t...The authors state briefly the possibility of various simulators to handle propagation of electromagnetic waves along some interconnections, in 3D RF (Radio Frequency) circuits. The studies are first derived in the time domain: a Finite-Difference Time-Domain method is applied, taking spectra via FFTs (Fast Fourier Transform) as post-processors. Electric and magnetic field distributions, pulse propagations along stripline structures or vias are highlighted. The scattering parameters for various cases are extracted and compared. Some original issue of this work is an insight on crosstalk or shielding phenomena between lines.展开更多
This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield...This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.展开更多
High frequency performance limits of graphene field-effect transistors (FETs) down to a channel length of 20 nm have been examined by using self-consistent quantum simulations. The results indicate that although Kle...High frequency performance limits of graphene field-effect transistors (FETs) down to a channel length of 20 nm have been examined by using self-consistent quantum simulations. The results indicate that although Klein band-to-band tunneling is significant for sub-100 nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20 nm. At a channel length of 20 nm, the intrinsic cut-off frequency remains at a few THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. The intrinsic cut-off frequency is close to the LC characteristic frequency set by graphene kinetic inductance (L) and quantum capacitance (C), which is about 100 GHz-um divided by the gate length.展开更多
We present an approach of GaAs MESFET incorporating the gate engineering effect to improve immunity against the short channel effects in order to enhance the scaling capability and the device performance for microwave...We present an approach of GaAs MESFET incorporating the gate engineering effect to improve immunity against the short channel effects in order to enhance the scaling capability and the device performance for microwave frequency applications. In this context, a physics-based model for I–V characteristics and various microwave characteristics such as transconductance, cut-off frequency and maximum frequency of oscillation of submicron triple material gate(TM) GaAs MESFET are developed. The reduced short channel effects have also been discussed in combined designs i.e. TM, DM and SM in order to show the impact of our approach on the GaAs MESFETs-based device design. The proposed analytical models have been verified by their good agreement with 2D numerical simulations. The models developed in this paper will be useful for submicron and microwave analysis for circuit design.展开更多
基金the National Natural Science Foun-dation of China(Grant Nos.91963201 and 12174163)the 111 Project(Grant No.B20063).
文摘The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.
基金Project supported by National Basic Research Program of China(973 Program) (6131380301) National Natural Science Foundation of China (61001050).
文摘To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.
基金supported by National Natural Science Foundation of China (Nos. 11475103, 21627812, 51578309)the National Key Research and Development Program of China (No. 2016YFD0102106)the Tsinghua University Initiative Scientific Program (No. 20161080108)
文摘Active control of the local environment of the cold atmospheric plasma(CAP) jet is of great importance in actual applications since the CAP operates in an open atmosphere with the inevitable entrainment of the surrounding cold air. In this paper, the solid shielding effects of the cylindrical quartz tubes with different inner diameters on the characteristics of the CAP jets driven by a radio-frequency(RF) power supply are studied experimentally. The experimental results show that the total length of the shielded plasma jet can be increased significantly by an appropriate combination of the quartz tube inner diameter and that of the plasma generator nozzle exit with other parameters being unchanged. This phenomenon may be qualitatively attributed to the loss of diffusion of the charged particles in the radial direction under different inner diameters of the quartz tubes. Compared with the plasma free jet, the plasma shielding jet is produced with optimized parameters including longer plasma jet length, higher concentrations of chemically reactive species, higher rotational, vibrational, and electron excitation temperatures when the inner diameters of the solid shielding tube and the generator nozzle exit are the same. A maximum plasma jet length of 52.0 cm is obtained in contrast to that of 5.0 cm of the plasma free jet in this study. The experimental results indicate that the solid shielding effect provides a new method for the active control of the local environment of the RF-CAP jet operating in an open atmosphere.
文摘This article presents some new experimental data for study the shielding effect of electromagnetic wave. The frequencies of electromagnetic wave are mainly focused on emission of daily electrical equipments, which are normally called “low frequency electromagnetic waves”. In this work, a water pump with maximum magnetic field intensity of ca. 2300 mG was applied as emission source of the electromagnetic wave. Experimental measurements used various shielding materials with the major constituent iron (Fe) in the form of plate for studying shielding effect of electromagnetic wave. The studied parameters were different thicknesses and gaps of the plate. The results show that pure iron plate has the best effect for shielding the magnetic field and its transmission ratio of magnetic field is proportional to distance between the emission source and the shielding plate. Moreover, the shielding plate close to the emission source received better protection.
文摘The authors state briefly the possibility of various simulators to handle propagation of electromagnetic waves along some interconnections, in 3D RF (Radio Frequency) circuits. The studies are first derived in the time domain: a Finite-Difference Time-Domain method is applied, taking spectra via FFTs (Fast Fourier Transform) as post-processors. Electric and magnetic field distributions, pulse propagations along stripline structures or vias are highlighted. The scattering parameters for various cases are extracted and compared. Some original issue of this work is an insight on crosstalk or shielding phenomena between lines.
文摘This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.
文摘High frequency performance limits of graphene field-effect transistors (FETs) down to a channel length of 20 nm have been examined by using self-consistent quantum simulations. The results indicate that although Klein band-to-band tunneling is significant for sub-100 nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20 nm. At a channel length of 20 nm, the intrinsic cut-off frequency remains at a few THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. The intrinsic cut-off frequency is close to the LC characteristic frequency set by graphene kinetic inductance (L) and quantum capacitance (C), which is about 100 GHz-um divided by the gate length.
文摘We present an approach of GaAs MESFET incorporating the gate engineering effect to improve immunity against the short channel effects in order to enhance the scaling capability and the device performance for microwave frequency applications. In this context, a physics-based model for I–V characteristics and various microwave characteristics such as transconductance, cut-off frequency and maximum frequency of oscillation of submicron triple material gate(TM) GaAs MESFET are developed. The reduced short channel effects have also been discussed in combined designs i.e. TM, DM and SM in order to show the impact of our approach on the GaAs MESFETs-based device design. The proposed analytical models have been verified by their good agreement with 2D numerical simulations. The models developed in this paper will be useful for submicron and microwave analysis for circuit design.