To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior u...To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.展开更多
In the paper, the experimental researches were carr ie d out to discuss the roundness forming rule and the influence of cutting paramet ers on roundness by ultrasonic vibration cutting of the camera’s guiding drawtu ...In the paper, the experimental researches were carr ie d out to discuss the roundness forming rule and the influence of cutting paramet ers on roundness by ultrasonic vibration cutting of the camera’s guiding drawtu be with 47.75 mm diameter and 0.6~1.5 mm wall thickness. The research results s h ow that the roundness error of ultra-thin wall parts in ultrasonic vibration cu tting is only one third of that in common cutting. The relations between the rou ndness error and the cutting parameters behave as: (1) The roundness error in co mmon cutting decreases gradually with the rise of cutting speed, while in ultras onic cutting, the roundness changes not obviously till the cutting speed is up t o a value, which is nearly equal to one third of the critical velocity. Then the roundness of workpiece will begin to increase slowly. (2) The roundness error i ncreases along with the feed rate both in common cutting and ultrasonic cutting. (3) Within the range of cutting depth in experiment, the influence of cutting d epth on the roundness error is more obvious in common cutting than that in ultra sonic vibration cutting. The conclusions are useful in machining such precise ul tra-thin wall parts. According to the tests, the following conclusions can be o btained: 1) Compared with common cutting, ultrasonic cutting can decrease effect ively roundness error of the workpiece. Under the same condition, the roundness error of the ultra-thin wall part in ultrasonic turning is about one third of t hat in common cutting. 2) In common cutting, cutting depth and feed rate have mu ch influence on the roundness and the influence of cutting velocity is little. W hile in ultrasonic cutting, the roundness was influenced heavily only when feed rate is more than 0.1 mm/r and cutting speed is more than 1/3 of the critical ro tation speed, cutting depth has little influence on the roundness in the experim ent. 3) Kerosene-oil is an optimum cutting fluid in machining ultra-thin wall workpiece. 4) To machine the ultra-thin wall precision part, ultrasonic cutting is the perfect method which can decrease the roundness error effectively an d ensure high quality of the surface.展开更多
Goodyear Tire & Rubber Co.announces its ambitious plans to ex-pand plants,modernize factories and increase cost-cutting.In reference to strengthening its presence in China,Goodyear plans to increase an initial inv...Goodyear Tire & Rubber Co.announces its ambitious plans to ex-pand plants,modernize factories and increase cost-cutting.In reference to strengthening its presence in China,Goodyear plans to increase an initial investment up to US$500 million for relocating and expanding its manufacturing plant in Dalian to facilitate increased production of high-value-added consumer and commercial tires for the Asia-Pacific region.展开更多
基金supported by the National Natural Science Foundation of China (51075147)
文摘To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.
文摘In the paper, the experimental researches were carr ie d out to discuss the roundness forming rule and the influence of cutting paramet ers on roundness by ultrasonic vibration cutting of the camera’s guiding drawtu be with 47.75 mm diameter and 0.6~1.5 mm wall thickness. The research results s h ow that the roundness error of ultra-thin wall parts in ultrasonic vibration cu tting is only one third of that in common cutting. The relations between the rou ndness error and the cutting parameters behave as: (1) The roundness error in co mmon cutting decreases gradually with the rise of cutting speed, while in ultras onic cutting, the roundness changes not obviously till the cutting speed is up t o a value, which is nearly equal to one third of the critical velocity. Then the roundness of workpiece will begin to increase slowly. (2) The roundness error i ncreases along with the feed rate both in common cutting and ultrasonic cutting. (3) Within the range of cutting depth in experiment, the influence of cutting d epth on the roundness error is more obvious in common cutting than that in ultra sonic vibration cutting. The conclusions are useful in machining such precise ul tra-thin wall parts. According to the tests, the following conclusions can be o btained: 1) Compared with common cutting, ultrasonic cutting can decrease effect ively roundness error of the workpiece. Under the same condition, the roundness error of the ultra-thin wall part in ultrasonic turning is about one third of t hat in common cutting. 2) In common cutting, cutting depth and feed rate have mu ch influence on the roundness and the influence of cutting velocity is little. W hile in ultrasonic cutting, the roundness was influenced heavily only when feed rate is more than 0.1 mm/r and cutting speed is more than 1/3 of the critical ro tation speed, cutting depth has little influence on the roundness in the experim ent. 3) Kerosene-oil is an optimum cutting fluid in machining ultra-thin wall workpiece. 4) To machine the ultra-thin wall precision part, ultrasonic cutting is the perfect method which can decrease the roundness error effectively an d ensure high quality of the surface.
文摘Goodyear Tire & Rubber Co.announces its ambitious plans to ex-pand plants,modernize factories and increase cost-cutting.In reference to strengthening its presence in China,Goodyear plans to increase an initial investment up to US$500 million for relocating and expanding its manufacturing plant in Dalian to facilitate increased production of high-value-added consumer and commercial tires for the Asia-Pacific region.