This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the ...This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
Cutter radius compensation (CRC) is a very important function of numerical control(NC) system. We refer to a large number of NC information and sum up the CRC function. We illustrate how to realize rough machining...Cutter radius compensation (CRC) is a very important function of numerical control(NC) system. We refer to a large number of NC information and sum up the CRC function. We illustrate how to realize rough machining & finish machining by the same program, machining matching surface by the same program, simplify pro- gramming methods, realize direct programming by parts contour, remove machining allowance by the increase of CRC value, control the parts size precision by adjusting the CRC value, state the essence of the CRC, and elucidate the physical meaning of the CRC value.展开更多
文摘This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
文摘Cutter radius compensation (CRC) is a very important function of numerical control(NC) system. We refer to a large number of NC information and sum up the CRC function. We illustrate how to realize rough machining & finish machining by the same program, machining matching surface by the same program, simplify pro- gramming methods, realize direct programming by parts contour, remove machining allowance by the increase of CRC value, control the parts size precision by adjusting the CRC value, state the essence of the CRC, and elucidate the physical meaning of the CRC value.