期刊文献+
共找到1,322篇文章
< 1 2 67 >
每页显示 20 50 100
Prediction of Dynamic Cutting Force and Regenerative Chatter Stability in Inserted Cutters Milling 被引量:9
1
作者 LI Zhongqun LIU Qiang +1 位作者 YUAN Songmei HUANG Kaisheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期555-563,共9页
Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact c... Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications. 展开更多
关键词 inserted cutter cutting force prediction chatter stability dynamic simulation
下载PDF
Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters 被引量:3
2
作者 Tao Chen Jiaqiang Liu +3 位作者 Gang Liu Hui Xiao Chunhui Li Xianli Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期219-229,共11页
Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing ineffici... Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing inefficiency,serious wear,poor workpiece face quality,etc.Aiming at the above problems,this paper carried out a comparative experimental study on titanium alloy milling based on the CAMCand BEMC.The variation law of cutting force and wear morphology of the two tools were obtained,and the wear mechanism and the effect of wear on machining quality were analyzed.The conclusion is that in contrast with BEMC,under the action of cutting thickness thinning mechanism,the force of CAMC was less,and its fluctuation was more stable.The flank wear was uniform and near the cutting edge,and the wear rate was slower.In the early period,the wear mechanism of CAMC was mainly adhesion.Gradually,oxidative wear also occurred with milling.Furthermore,the surface residual height of CAMC was lower.There is no obvious peak and trough accompanied by fewer surface defects. 展开更多
关键词 Circular-arc milling cutter Titanium alloy Ball-end milling cutter Surface quality milling force Tool wear Machining quality
下载PDF
New Mathematical Method for the Determination of Cutter Runout Parameters in Flat-end Milling 被引量:2
3
作者 GUO Qiang SUN Yuwen +1 位作者 GUO Dongming ZHANG Chuantai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期947-952,共6页
The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milli... The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milling process, it is necessary to incorporate the cutter runout parameters into the prediction model of cutting forces. However, the determination of cutter runout parameters is still a challenge task until now. In this paper, cutting process geometry models, such as uncut chip thickness and pitch angle, are established based on the true trajectory of the cutting edge considering the cutter runout effect. A new algorithm is then presented to compute the cutter runout parameters for flat-end mill utilizing the sampled data of cutting forces and derived process geometry parameters. Further, three-axis and five-axis milling experiments were conducted on a machining centre, and resulting cutting forces were sampled by a three-component dynamometer. After computing the corresponding cutter runout parameters, cutter forces are simulated embracing the cutter runout parameters obtained from the proposed algorithm. The predicted cutting forces show good agreements with the sampled data both in magnitude and shape, which validates the feasibility and effectivity of the proposed new algorithm of determining cutter runout parameters and the new way to accurately predict cutting forces. The proposed method for computing the cutter runout parameters provides the significant references for the cutting force prediction in the cutting process. 展开更多
关键词 flat end milling cutter runout cutting force five-axis machining
下载PDF
The Design of Form Milling Cutter as the Curve of the Back of Tooth Is Logarithmic Spiral
4
作者 ZHENG You-yi 1, HUANG Zu-yu 2, GAO Ai-hua 1 (1. Jiaozuo Institute of Technology, Jiaozuo 454000, China 2. Factory of Jiaozuo Machine Tool, Jiaozuo 454000, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期65-66,共2页
Form milling cutter is built-for-purpose cutter which process the form surface, for example, usually process male and female circular arc face and form trench and so on. From the traditional concept, form milling cutt... Form milling cutter is built-for-purpose cutter which process the form surface, for example, usually process male and female circular arc face and form trench and so on. From the traditional concept, form milling cutter is divided into pointed tooth and relieving follow its structure. Relieving shaped cutter is more convenient than pointed tooth milling cutter, because only its rake face is needed to grind after it turn into blunting, so the current books which are used in college almost select relieving shaped cutter in order to introduce how to design the form milling cutter.The curve of the back of tooth of relieving cutter is the transversal which is formed by the rear face of tooth in the end cut plane of the milling cutter. In the past, because of the limit of the manufacturing technology, the curve of the back of tooth is often selected Archimedes’ curve, in order that the shovel-nose tool acquire the uniform motion when the cutter shovel the back, in other word, the rear face of the milling cutter rotate its axis by the new cutting lip, in the same time, it move uniformly to the axis in order to form the surface. Although this curve of the back of tooth meet the fixedness of the form of blade around grinding the cutter, the rear angle of the dot of the cutting lip don’t keep fixedness. With the development of the modern manufacturing technology, the unmanageable problem of many complex curves is already easily solved. So it is need to study the optimum profile of the curve of the back of tooth in theory, and study the design theory of the relieving shaped cutter under the condition of new manufacture, in order to ensure that the rear angle of the dot of the cutting lip keep fixedness after the relieving shaped cutter is grinded. The paper derive the curve profile of tooth of the form cutter and the modifier calculation formula of the profile of the cutter edge from the definition of the rear angle of the cutter, which establish the foundation for the precision design and manufacture of other form cutter. 展开更多
关键词 design of form milling cutter tooth back logarithmic spiral archimedes spiral
下载PDF
Cutter Accessibility Map and Its Application for 5-axis Milling Tool-path Generation
5
作者 L. L. Li,Y. F. Zhang (Department of Mechanical Engineering,National University of Singapore 9 Engineering Drive 1,Singapore 117576) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期40-47,共8页
In tool-path generation process for 5-axis face milling,the specification of cutter posture is one of the critical issues that contribute to the computation load. In this paper,a quick algorithm is presented to specif... In tool-path generation process for 5-axis face milling,the specification of cutter posture is one of the critical issues that contribute to the computation load. In this paper,a quick algorithm is presented to specify the cutter posture at a surface point based on the cutter’s accessibility maps (A-maps) at all the sampled points,obtained during cutter selection. Integrated with this quick algorithm,an efficient approach is proposed to generate a set of iso-planar tool-paths for finishing a given surface withmaximum machining efficiency without violating the desirable profile and scallop height tolerance. One example is given to confirm the validity of the quick algorithm for cutter posture and the efficiency of the algorithm for tool-path generation. 展开更多
关键词 cutter ACCESSIBILITY MAP tool-path generation machining STRIP width step-over
下载PDF
Research on the cutting performance and the wear mechanism of the cermet cutter in high speed turn-milling
6
作者 贾春德 黄树涛 +2 位作者 姜增辉 张志军 石莉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期700-704,共5页
When machining D60 steel by high speed turn-milling under the different cooling and lubricating conditions, the cutting performance and the wear mechanism of the cermet cutter are researched. With water soluble coolin... When machining D60 steel by high speed turn-milling under the different cooling and lubricating conditions, the cutting performance and the wear mechanism of the cermet cutter are researched. With water soluble cooling fluid, the wear performance of the cermet cutter is bad, and does not adapt to the requirements of machining. However, when machining D60 by high speed turn-milling is under dry conditions, the wearing performance of the cermet cutter is very good and the cutting time lasts almost 3 hours. The wear mechanism of the cermet cutter under the water soluble cooling fluid is different from the dry condition. With the water soluble cooling fluid, a great deal of little chap units are formed since high frequency alternates heat stress. The crash and desquamate of these chap units is the main cause of the cutter wearing. Under dry cutting conditions, it is the main cause of cermet cutter wear in the felting phase intenerating causing rigid phase grains to fall. 展开更多
关键词 high speed cutting high speed turn-milling cermet cutter cutting performance mechanism of wearing
下载PDF
Experimental study on the influences of cutter geometry and material on scraper wear during shield TBM tunnelling in abrasive sandy ground
7
作者 Shaohui Tang Xiaoping Zhang +3 位作者 Quansheng Liu Qi Zhang Xinfang Li Haojie Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期410-425,共16页
When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on sc... When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on scraper wear remains unclear due to the lack of a reliable test method.Geometry and material optimisation are often based on subjective experience,which is unfavourable for improving scraper geological adaptability.In the present study,the newly developed WHU-SAT soil abrasion test was used to evaluate the variation in scraper wear with cutter geometry,material and hardness.The influence mechanism of cutter parameters on scraper wear has been revealed according to the scratch characteristics of the scraper surface.Cutter geometry and material parameters have been optimised to reduce scraper wear.The results indicate that the variation in scraper wear with cutter geometry is related to the cutting resistance,frictional resistance and stress distribution.An appropriate increase in the front angle(or back angle)reduces the cutting resistance(or frictional resistance),while an excessive increase in the front angle(or back angle)reduces the edge angle and causes stress concentration.The optimal front angle,back angle and edge angle for quartz sand samples areα=25°,β=10°andγ=55°,respectively.The wear resistance of the modelled scrapers made of different metal materials is related to the chemical elements and microstructure.The wear resistances of the modelled scrapers made of 45#,06Cr19Ni10,42CrMo4 and 40CrNiMoA are 0.569,0.661,0.691 and 0.728 times those made of WC-Co,respectively.When the alloy hardness is less than 47 HRC(or greater than 58 HRC),scraper wear decreases slowly with increasing alloy hardness as the scratch depth of the particle asperity on the metal surface stabilizes at a high(or low)level.However,when the alloy hardness is between 47 HRC and 58 HRC,scraper wear decreases rapidly with increasing alloy hardness as the scratch depth transitions from high to low levels.The sensitive hardness interval and recommended hardness interval for quartz sand are[47,58]and[58,62],respectively.The present study provides a reference for optimising scraper parameters and improving cutterhead adaptability in abrasive sandy ground tunnelling. 展开更多
关键词 Shield TBM Scraper wear cutter shape Metal material Alloy hardness
下载PDF
Research on the design method for uniform wear of shield cutters in sand-pebble strata
8
作者 Jinxun Zhang Bo Li +4 位作者 Guihe Wang Yusheng Jiang Hua Jiang Minglun Yin Zhengyang Sun 《Deep Underground Science and Engineering》 2024年第2期216-230,共15页
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ... During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata. 展开更多
关键词 cutter wear EDEM model long-distance shield driving sand-pebble stratum shield tunnel uniform wear design method
下载PDF
MATHEMATICAL MODEL OF NC MACHINING NONCONVENTIONAL MILLING CUTTERS-FORMING METHOD OF RAKE FACES
9
作者 Shen Qian ,Wang Min Nanjing University of Aeronautics and Astronautics 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1997年第2期156-160,共3页
How to generate rake faces of nonconventional milling cutters (NCMC) with constant spiral angled and normal rake angled edges on NC machine tools is presented by use of a blunt cup grinder or a cup milling cutter. Mot... How to generate rake faces of nonconventional milling cutters (NCMC) with constant spiral angled and normal rake angled edges on NC machine tools is presented by use of a blunt cup grinder or a cup milling cutter. Motion functions of the NC machining system are mathematically deduced and exam- ed by a experiment. The research will provide theoretical and practical guidance for machining noncon- ventional tools on NC machine tools. 展开更多
关键词 Nonconventional milling cutters Spiral angle Normal angle Rake face NC machining
全文增补中
CUTTING TEMPERATURE MEASUREMENT IN HIGH-SPEED END MILLING 被引量:8
10
作者 全燕鸣 林金萍 王成勇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期47-51,共5页
A computer aided measurement system is used to measure the cutting temperature directly in high-speed machining by natural thermocouples and standard thermocouples. In this system the tool/workpiece interface temperat... A computer aided measurement system is used to measure the cutting temperature directly in high-speed machining by natural thermocouples and standard thermocouples. In this system the tool/workpiece interface temperature is measured by the tool/workpiece natural thermocouple, while the temperature distribution on the workpiece surface and that of interior are measured by some standard thermocouples prearranged at proper positions. The system can be used to measure cutting temperature in the machining with the rotary cutting tools, such as vertical drill and end milling cutter. It is practically used for the research on high-speed milling with hardened steel. 展开更多
关键词 high-speed milling end milling cutter cutting temperature THERMOCOUPLE
下载PDF
Mechanical model of breaking rock and force characteristic of disc cutter 被引量:23
11
作者 夏毅敏 欧阳涛 +1 位作者 张新明 罗德志 《Journal of Central South University》 SCIE EI CAS 2012年第7期1846-1858,共13页
According to the cutting characteristics of progressive spiral movement by rotary cutting of the disc cutter, using the broken theory of interaction of compression and shearing, the three-axis force rotary cutting mec... According to the cutting characteristics of progressive spiral movement by rotary cutting of the disc cutter, using the broken theory of interaction of compression and shearing, the three-axis force rotary cutting mechanical model of disc cutter was established and the influence of installation radius, the phase difference and the cutter space on the mechanics of disc cutter were analyzed. The results show that on the same radial line of tunneling interface, the boring distance of cutting tools installed on a different radius is not equal. The cutting radial line of tunneling interface is a polyline and its height is determined by phase angle and penetration of cutting tools. Both phase difference and the installation radius between adjacent disc cutters have little effect on the vertical force and rolling force, but increase with the increase in cutter spacing. In addition, when increasing phase difference and cutter space bilaterally, and reducing installation radius simultaneously, the lateral force would be improved. Related results have been verified onl O0 t rotary tool cutting test platform. 展开更多
关键词 mechanical model phase angle installation radius cutter space disc cutter
下载PDF
Design Theory of Full Face Rock Tunnel Boring Machine Transition Cutter Edge Angle and Its Application 被引量:25
12
作者 ZHANG Zhaohuang MENG Liang SUN Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期541-546,共6页
At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of... At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased. 展开更多
关键词 disc cutter three-dimensional mode edge angle full face rock tunnel boring machine (TBM) flat-face cutterhead
下载PDF
Rock deformation equations and application to the study on slantingly installed disc cutter 被引量:17
13
作者 Zhao-Huang Zhang Liang Meng Fei Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期540-546,共7页
At present the mechanical model of the interac- tion between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line... At present the mechanical model of the interac- tion between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the func- tional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installa- tion angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM. 展开更多
关键词 TBM Disc cutter· Geometric equation Slant-ingly installed Rock-breaking
下载PDF
Fragmentation Energy-Saving Theory of Full Face Rock Tunnel Boring Machine Disc Cutters 被引量:12
14
作者 Zhao-Huang Zhang Guo-Fang Gong +1 位作者 Qing-Feng Gao Fei Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期913-919,共7页
Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc- cutter spacing, as determined by the minimum specific energy ... Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc- cutter spacing, as determined by the minimum specific energy required for fragmentation; however, indentation tests showed that rock deforms plastically beneath the cutters. Equations for thrust were developed for both the traditional, popularly employed disc cutter and anew design based on three-dimensional theory. The respective energy consumption for penetration, rolling, and side-slip fragmentations were obtained. A change in disc-cutter fragmentation angles resulted in a change in the nature of the interaction between the cutter and rock, which lowered the specific energy of fragmentation. During actual field excavations to the same penetration length, the combined energy consumption for fragmentation using the newly designed cutters was 15% lower than that when using the traditional design. This paper presents a theory for energy saving in tunnel boring machines. Investigation results showed that the disc cutters designed using this theory were more durable than traditional designs, and effectively lowered the energy consumption. 展开更多
关键词 Newly design Disc cutter FRAGMENTATION Specific energy Energy consumption
下载PDF
A Closer Look at the Design of Cutterheads for Hard Rock Tunnel-Boring Machines 被引量:17
15
作者 Jamal Rostami Soo-Ho Chang 《Engineering》 SCIE EI 2017年第6期892-904,共13页
The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part ... The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP), rate of machine utilization (U), and daffy advance rate (AR). Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutter- heads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to Look for in a proper design, and the implications of the head design on machine operation and life cycle. 展开更多
关键词 TBM cutterhead design cutterhead layout Disk cutters Cutting pattern TBM efficiency
下载PDF
Wear Analysis of Disc Cutters of Full Face Rock Tunnel Boring Machine 被引量:19
16
作者 ZHANG Zhaohuang MENG Liang SUN Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1294-1300,共7页
Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length... Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters. 展开更多
关键词 full face rock tunnel boring machine disc cutter radial wear coefficient axial wear coefficient trajectory wear coefficient
下载PDF
Distribution of contact loads in crushed zone between tunnel boring machine disc cutter and rock 被引量:11
17
作者 SHI Yu-peng XIA Yi-min +2 位作者 TAN Qing ZHANG Yi-chao QIAO Shuo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2393-2403,共11页
The construction efficiency and quality of tunnel boring machines(TBMs)is largely determined by the service life of cutting tools,which is the result of contact loads in the crushed zone between cutter ring and rock.I... The construction efficiency and quality of tunnel boring machines(TBMs)is largely determined by the service life of cutting tools,which is the result of contact loads in the crushed zone between cutter ring and rock.In this paper,a series of rock breaking tests were conducted with a 216 mm diameter disc cutter and concrete samples.Based on the superposition principle,the distribution of contact loads between disc cutter and rock were obtained by using the truncated singular value decomposition(TSVD).The results show that both the peak value and the whole numerical distribution of the radial strains on the cutter ring increase with the increase of the penetration.The distribution curves of the contact loads show an approximate parabola going downwards,which indicates contact loads are more concentrated.The front non-loading area with a ratio from 1.8%to 5.4%shows an increasing trend with the increase of penetration.However,the change of rear non-loading area is not obvious.It is believed that the conclusions have guidance for the study of rock breaking mechanism and manufacturing process of the disc cutter. 展开更多
关键词 disc cutter contact loads superposition principle non-loading area
下载PDF
Prediction of Disc Cutter Life During Shield Tunneling with AI via the Incorporation of a Genetic Algorithm into a GMDH-Type Neural Network 被引量:15
18
作者 Khalid Elbaz Shui-Long Shen +2 位作者 Annan Zhou Zhen-Yu Yin Hai-Min Lyu 《Engineering》 SCIE EI 2021年第2期238-251,共14页
Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cut... Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cutter life(Hf)by integrating a group method of data handling(GMDH)-type neural network(NN)with a genetic algorithm(GA).The efficiency and effectiveness of the GMDH network structure are optimized by the GA,which enables each neuron to search for its optimum connections set from the previous layer.With the proposed model,monitoring data including the shield performance database,disc cutter consumption,geological conditions,and operational parameters can be analyzed.To verify the performance of the proposed model,a case study in China is presented and a database is adopted to illustrate the excellence of the hybrid model.The results indicate that the hybrid model predicts disc cutter life with high accuracy.The sensitivity analysis reveals that the penetration rate(PR)has a significant influence on disc cutter life.The results of this study can be beneficial in both the planning and construction stages of shield tunneling. 展开更多
关键词 Disc cutter life Shield tunneling Operational parameters GMDH-GA
下载PDF
Theoretical prediction of wear of disc cutters in tunnel boring machine and its application 被引量:8
19
作者 Zhaohuang Zhang Muhammad Aqeel +1 位作者 Cong Li Fei Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期111-120,共10页
Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the anal... Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time. 展开更多
关键词 Full-face rock TUNNEL BORING machine(TBM) DISC cutter WEAR prediction
下载PDF
Numerical and experimental investigation of rock breaking method under free surface by TBM disc cutter 被引量:11
20
作者 ZHANG Xu-hui XIA Yi-min +2 位作者 ZENG Gui-ying TAN Qing GUO Ben 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2107-2118,共12页
To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under th... To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper. 展开更多
关键词 free surface tunnel boring machine disc cutter rock breaking method
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部