期刊文献+
共找到35,226篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the design method for uniform wear of shield cutters in sand-pebble strata
1
作者 Jinxun Zhang Bo Li +4 位作者 Guihe Wang Yusheng Jiang Hua Jiang Minglun Yin Zhengyang Sun 《Deep Underground Science and Engineering》 2024年第2期216-230,共15页
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ... During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata. 展开更多
关键词 cutter wear EDEM model long-distance shield driving sand-pebble stratum shield tunnel uniform wear design method
下载PDF
Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters 被引量:2
2
作者 Tao Chen Jiaqiang Liu +3 位作者 Gang Liu Hui Xiao Chunhui Li Xianli Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期219-229,共11页
Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing ineffici... Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing inefficiency,serious wear,poor workpiece face quality,etc.Aiming at the above problems,this paper carried out a comparative experimental study on titanium alloy milling based on the CAMCand BEMC.The variation law of cutting force and wear morphology of the two tools were obtained,and the wear mechanism and the effect of wear on machining quality were analyzed.The conclusion is that in contrast with BEMC,under the action of cutting thickness thinning mechanism,the force of CAMC was less,and its fluctuation was more stable.The flank wear was uniform and near the cutting edge,and the wear rate was slower.In the early period,the wear mechanism of CAMC was mainly adhesion.Gradually,oxidative wear also occurred with milling.Furthermore,the surface residual height of CAMC was lower.There is no obvious peak and trough accompanied by fewer surface defects. 展开更多
关键词 Circular-arc milling cutter Titanium alloy Ball-end milling cutter Surface quality Milling force Tool wear Machining quality
下载PDF
Theoretical and numerical studies of rock breaking mechanism by double disc cutters 被引量:1
3
作者 Yiqiang Kang Renshu Yang +4 位作者 Liyun Yang Chengxiao Li Jun Chen Haonan Zhu Ning Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期815-828,共14页
A plane mechanical model of rock breaking process by double disc cutter at the center of the cutterhead is established based on contact mechanics to analyze the stress evolution in the rock broken by cutters with diff... A plane mechanical model of rock breaking process by double disc cutter at the center of the cutterhead is established based on contact mechanics to analyze the stress evolution in the rock broken by cutters with different spacings. A continuous-discontinuous coupling numerical method based on zero-thickness cohesive elements is developed to simulate rock breaking using double cutters. The process, mechanism,and characteristics of rock breaking are comprehensively analyzed from five aspects: peak force, breaking form, breaking efficiency, crack mode, and breaking degree. The results show that under the penetrating action of cutters, dense cores are formed due to shear failure under respective cutters. The tensile cracks propagate in the rock, and then rock chips form with increasing penetration depth. When the cutter spacing is increased from 10 to 80 mm, the peak force gradually increases, the rock breaking range increases first and then decreases, the specific energy decreases first and then rises, and the breaking coefficient of intermediate rock decreases from 0.955 to 0.788. The area of rock breaking is positively correlated with the length of the tensile crack. Furthermore, the length of the tensile crack accounts for 14.4%–33.6% of the total crack length. 展开更多
关键词 Disc cutter spacing Mechanical model Indentation experiment Continuous-discontinuous numerical method Fractal dimension
下载PDF
Optimization Design of the Multi-Layer Cross-Sectional Layout of An Umbilical Based on the GA-GLM 被引量:1
4
作者 YANG Zhi-xun YIN Xu +5 位作者 FAN Zhi-rui YAN Jun LU Yu-cheng SU Qi MAO Yandong WANG Hua-lin 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期247-254,共8页
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct... Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry. 展开更多
关键词 UMBILICAL cross-sectional layout MULTI-LAYERS GA-GLM optimization
下载PDF
Experimental study on the influences of cutter geometry and material on scraper wear during shield TBM tunnelling in abrasive sandy ground
5
作者 Shaohui Tang Xiaoping Zhang +3 位作者 Quansheng Liu Qi Zhang Xinfang Li Haojie Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期410-425,共16页
When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on sc... When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on scraper wear remains unclear due to the lack of a reliable test method.Geometry and material optimisation are often based on subjective experience,which is unfavourable for improving scraper geological adaptability.In the present study,the newly developed WHU-SAT soil abrasion test was used to evaluate the variation in scraper wear with cutter geometry,material and hardness.The influence mechanism of cutter parameters on scraper wear has been revealed according to the scratch characteristics of the scraper surface.Cutter geometry and material parameters have been optimised to reduce scraper wear.The results indicate that the variation in scraper wear with cutter geometry is related to the cutting resistance,frictional resistance and stress distribution.An appropriate increase in the front angle(or back angle)reduces the cutting resistance(or frictional resistance),while an excessive increase in the front angle(or back angle)reduces the edge angle and causes stress concentration.The optimal front angle,back angle and edge angle for quartz sand samples areα=25°,β=10°andγ=55°,respectively.The wear resistance of the modelled scrapers made of different metal materials is related to the chemical elements and microstructure.The wear resistances of the modelled scrapers made of 45#,06Cr19Ni10,42CrMo4 and 40CrNiMoA are 0.569,0.661,0.691 and 0.728 times those made of WC-Co,respectively.When the alloy hardness is less than 47 HRC(or greater than 58 HRC),scraper wear decreases slowly with increasing alloy hardness as the scratch depth of the particle asperity on the metal surface stabilizes at a high(or low)level.However,when the alloy hardness is between 47 HRC and 58 HRC,scraper wear decreases rapidly with increasing alloy hardness as the scratch depth transitions from high to low levels.The sensitive hardness interval and recommended hardness interval for quartz sand are[47,58]and[58,62],respectively.The present study provides a reference for optimising scraper parameters and improving cutterhead adaptability in abrasive sandy ground tunnelling. 展开更多
关键词 Shield TBM Scraper wear cutter shape Metal material Alloy hardness
下载PDF
Development of Fixture Layout Optimization for Thin-Walled Parts:A Review
6
作者 Changhui Liu Jing Wang +3 位作者 Binghai Zhou Jianbo Yu Ying Zheng Jianfeng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期15-39,共25页
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit... An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field. 展开更多
关键词 Thin-walled parts Assembly quality Fixture layout optimization Modeling methods Optimization algorithms
下载PDF
Web Layout Design of Large Cavity Structures Based on Topology Optimization
7
作者 Xiaoqiao Yang Jialiang Sun Dongping Jin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2665-2689,共25页
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas... Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures. 展开更多
关键词 Topology optimization lightweight design web layout design cavity structure
下载PDF
Optimizing wind farm layout for enhanced electricity extraction using a new hybrid PSO-ANN method
8
作者 Mariam El Jaadi Touria Haidi +2 位作者 Abdelaziz Belfqih Mounia Farah Atar Dialmy 《Global Energy Interconnection》 EI CSCD 2024年第3期254-269,共16页
With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy e... With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future. 展开更多
关键词 layout optimization Turbine placement Wind energy Hybrid optimization Particle swarm optimization Artificial neural networks Renewable energy Energy efficiency
下载PDF
GNN Representation Learning and Multi-Objective Variable Neighborhood Search Algorithm for Wind Farm Layout Optimization
9
作者 Yingchao Li JianbinWang HaibinWang 《Energy Engineering》 EI 2024年第4期1049-1065,共17页
With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the rou... With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm. 展开更多
关键词 GNN representation learning variable neighborhood search multi-objective optimization wind farm layout point of common coupling
下载PDF
Optimizing Memory Access Efficiency in CUDA Kernel via Data Layout Technique
10
作者 Neda Seifi Abdullah Al-Mamun 《Journal of Computer and Communications》 2024年第5期124-139,共16页
Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these adv... Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these advancements, efficiently programming GPUs remains a daunting challenge, often relying on trial-and-error optimization methods. This paper introduces an optimization technique for CUDA programs through a novel Data Layout strategy, aimed at restructuring memory data arrangement to significantly enhance data access locality. Focusing on the dynamic programming algorithm for chained matrix multiplication—a critical operation across various domains including artificial intelligence (AI), high-performance computing (HPC), and the Internet of Things (IoT)—this technique facilitates more localized access. We specifically illustrate the importance of efficient matrix multiplication in these areas, underscoring the technique’s broader applicability and its potential to address some of the most pressing computational challenges in GPU-accelerated applications. Our findings reveal a remarkable reduction in memory consumption and a substantial 50% decrease in execution time for CUDA programs utilizing this technique, thereby setting a new benchmark for optimization in GPU computing. 展开更多
关键词 Data layout Optimization CUDA Performance Optimization GPU Memory Optimization Dynamic Programming Matrix Multiplication Memory Access Pattern Optimization in CUDA
下载PDF
Fragmentation Energy-Saving Theory of Full Face Rock Tunnel Boring Machine Disc Cutters 被引量:11
11
作者 Zhao-Huang Zhang Guo-Fang Gong +1 位作者 Qing-Feng Gao Fei Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期913-919,共7页
Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc- cutter spacing, as determined by the minimum specific energy ... Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc- cutter spacing, as determined by the minimum specific energy required for fragmentation; however, indentation tests showed that rock deforms plastically beneath the cutters. Equations for thrust were developed for both the traditional, popularly employed disc cutter and anew design based on three-dimensional theory. The respective energy consumption for penetration, rolling, and side-slip fragmentations were obtained. A change in disc-cutter fragmentation angles resulted in a change in the nature of the interaction between the cutter and rock, which lowered the specific energy of fragmentation. During actual field excavations to the same penetration length, the combined energy consumption for fragmentation using the newly designed cutters was 15% lower than that when using the traditional design. This paper presents a theory for energy saving in tunnel boring machines. Investigation results showed that the disc cutters designed using this theory were more durable than traditional designs, and effectively lowered the energy consumption. 展开更多
关键词 Newly design Disc cutter FRAGMENTATION Specific energy Energy consumption
下载PDF
Prediction of Dynamic Cutting Force and Regenerative Chatter Stability in Inserted Cutters Milling 被引量:9
12
作者 LI Zhongqun LIU Qiang +1 位作者 YUAN Songmei HUANG Kaisheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期555-563,共9页
Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact c... Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications. 展开更多
关键词 inserted cutter cutting force prediction chatter stability dynamic simulation
下载PDF
Theoretical prediction of wear of disc cutters in tunnel boring machine and its application 被引量:7
13
作者 Zhaohuang Zhang Muhammad Aqeel +1 位作者 Cong Li Fei Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期111-120,共10页
Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the anal... Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time. 展开更多
关键词 Full-face rock TUNNEL BORING machine(TBM) DISC cutter WEAR prediction
下载PDF
Wear Analysis of Disc Cutters of Full Face Rock Tunnel Boring Machine 被引量:19
14
作者 ZHANG Zhaohuang MENG Liang SUN Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1294-1300,共7页
Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length... Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters. 展开更多
关键词 full face rock tunnel boring machine disc cutter radial wear coefficient axial wear coefficient trajectory wear coefficient
下载PDF
Penetration and impact resistance of PDC cutters inclined at different attack angles 被引量:2
15
作者 李夕兵 《中国有色金属学会会刊:英文版》 CSCD 2000年第2期275-279,共5页
In order to develop a rotary percussive bit with diamond enhanced cutters assisted by high pressure water jets, it is necessary to study the damage mechanism and the penetration properties of PDC cutters subject to di... In order to develop a rotary percussive bit with diamond enhanced cutters assisted by high pressure water jets, it is necessary to study the damage mechanism and the penetration properties of PDC cutters subject to different impact load level and rock types. Therefore the impact experiments of the single PDC cutters with different attack angles in four rocks: black basalt, Missouri red granite, Halston limestone, and a very soft (Roubidoux) sandstone were carried out, and the effects of rake angles of PDC cutters on both the penetration and impact resistance of PDC cutters have been discussed in detail. Test results show that a PDC insert can withstand a very strong impact in compression but is easily damaged by impact shearing, the PDC cutters are more easily damaged by shearing if the attack angles are relatively small, the 45? PDC cutters have the least penetration resistance among the cutters tested. Thus it is suggested that the attack angles of PDC cutters should be larger than 30? for bits which must withstand impact from a hammer. 展开更多
关键词 PDC cutters PENETRATION and impact RESISTANCE ROTARY percussive DRILL BITS
下载PDF
Rock fragmentation under different installation polar angles of TBM disc cutters 被引量:1
16
作者 程永亮 钟掘 +1 位作者 梅勇兵 夏毅敏 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2306-2313,共8页
The disc cutters of tunnel boring machine(TBM) are installed with different polar angles. This causes the cutting depth difference between adjacent disc cutters on the tunnel face. A rock-cutting model was established... The disc cutters of tunnel boring machine(TBM) are installed with different polar angles. This causes the cutting depth difference between adjacent disc cutters on the tunnel face. A rock-cutting model was established to study the rock fragmentation law between adjacent disc cutters with different polar angles based on particle flow code(PFC). The influence of polar angle of adjacent disc cutters on rock cracks and stresses under different cutter spacing and penetration was studied. Research shows that polar angle difference leads to the discontinuity of rock-fragmentation process by adjacent cutters. The effect of rock-fragmentation is influenced by the cutting depth difference between adjacent cutters. The effect of rock-fragmentation performed best, meanwhile large rock blocks were flaked when the difference of cutting depth is half of the penetration. Too large or small difference of the cutting depth will cause high specific energy consumption of rock fragmentation. The specific energy consumption is relatively small when the difference of cutting depth is half of the penetration. 展开更多
关键词 tunnel BORING machine DISC cutter POLAR angle particle flow code rock FRAGMENTATION
下载PDF
Recovery of valuable metals from waste diamond cutters through ammonia–ammonium sulfate leaching 被引量:1
17
作者 Ping Xue Guang-qiang Li +2 位作者 Yong-xiang Yang Qin-wei Qin Ming-xing Wei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1352-1360,共9页
Copper and zinc were recovered from waste diamond cutters through leaching with an ammonia–ammonium sulfate system and air as an oxidant. The effects of experimental parameters on the leaching process were investigat... Copper and zinc were recovered from waste diamond cutters through leaching with an ammonia–ammonium sulfate system and air as an oxidant. The effects of experimental parameters on the leaching process were investigated, and the potential–pH(E–pH) diagrams of Cu–NH_3–SO_4^(2-)–H_2O and Zn–NH_3–SO_4^(-2)–H_2O at 25°C were drawn. Results showed that the optimal parameters for the leaching reaction are as follows: reaction temperature, 45°C; leaching duration, 3 h; liquid-to-solid ratio, 50:1(mL/g); stirring speed, 200 r/min; ammonia concentration, 4.0 mol/L; ammonium sulfate concentration, 1.0 mol/L; and air flow rate, 0.2 L/min. The results of the kinetics study indicated that the leaching is controlled by the surface chemical reaction at temperatures below 35°C, and the leaching is controlled by diffusion through the product layer at temperatures above 35°C. 展开更多
关键词 RECOVERY WASTE DIAMOND cutters renewable resources ammonia–ammonium sulfate LEACHING kinetics
下载PDF
Influence of confining stress on fracture characteristics and cutting efficiency of TBM cutters conducted on soft and hard rock 被引量:2
18
作者 刘京铄 曹平 +1 位作者 刘杰 蒋喆 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1947-1955,共9页
Combined with numerical simulation, the influence of confining stress on cutting process, fracture conditions and cutting efficiencies of soft and hard rock has been conducted on the triaxial testing machine(TRW-3000)... Combined with numerical simulation, the influence of confining stress on cutting process, fracture conditions and cutting efficiencies of soft and hard rock has been conducted on the triaxial testing machine(TRW-3000) designed and manufactured in Central South University(China). Results are obtained by performing analysis on the fracture scopes of cement and granite plates,the characteristics of cutting force in cutting processes and the cutting efficiency. Firstly, the increase of latitude fracture scope and the decrease of longitude fracture scope are both more notable in the tests conducted on cement plates subjected to the increasing confining stresses; secondly, the increase tendency of peak penetration forces obtained from tests conducted on granite plates is more obvious, however, the increase tendencies of average penetration forces achieved from cement and granite plates are close to each other; thirdly, the cutting efficiency could be improved by increasing the spacing between cutters when the confining stress which acts on soft and hard rock increases in a certain degree, and the cutting efficiency of soft rock is more sensitive to the varying confining stresses. 展开更多
关键词 triaxial testing machine numerical study tunnel boring machine(TBM) cutter confining stress soft and hard rock cutting efficiency
下载PDF
Design Optimization of TBM Disc Cutters for Different Geological Conditions 被引量:1
19
作者 Yimin Xia Kui Zhang Jingsheng Liu 《World Journal of Engineering and Technology》 2015年第4期218-231,共14页
A novel optimization methodology for the disc cutter designs of tunnel boring machines (TBM) was presented. To fully understand the characteristics and performance of TBM cutters, a comprehensive list of performance p... A novel optimization methodology for the disc cutter designs of tunnel boring machines (TBM) was presented. To fully understand the characteristics and performance of TBM cutters, a comprehensive list of performance parameters were investigated, including maximum equivalent stress and strain, specific energy and wear life which were closely related to the cutting forces and profile geometry of the cutter rings. A systematic method was employed to evaluate an overall performance index by incorporating objectives at all possible geological conditions. The Multi-objective & Multi-geologic Conditions Optimization (MMCO) program was then developed, which combined the updating of finite element model, system evaluation, finite element solving, post-processing and optimization algorithm. Finally, the MMCO was used to optimize the TBM cutters used in a TBM tunnel project in China. The results show that the optimization significantly improves the working performances of the cutters under all geological conditions considered. 展开更多
关键词 DISC cutter FINITE ELEMENT Method GEOLOGICAL Condition Structural Optimization TBM
下载PDF
Cutting capacity of PDC cutters in very hard rock 被引量:8
20
作者 李夕兵 赵复军 +1 位作者 D.A.Summers G.Rupert 《中国有色金属学会会刊:英文版》 CSCD 2002年第2期305-309,共5页
An experimental programm of investigating the cutting capacity of PDC flat cutters in very hard rock has been performed. Experiments include both the cutting of PDC fixed at different angles on the granite core or bar... An experimental programm of investigating the cutting capacity of PDC flat cutters in very hard rock has been performed. Experiments include both the cutting of PDC fixed at different angles on the granite core or bar and linear cutting with different static thrust on the block of granite. The effects of the rough degree of rock surface, cutting angles, and static thrust on the cutting capacity of PDC in very hard rock were investigated and analyzed. The results show that the single mode of rotary drilling using PDC cutters is not applied for very hard rocks. 展开更多
关键词 岩石切割 PDC刀具 旋转钻探 硬质岩石
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部