In this note we prove that the corner cutting procedure preserves continuityproperties,i.e.,a sequence of polygons obtained in this way belongs to the Lipschitz classof the same constant and exponent.As a consequence ...In this note we prove that the corner cutting procedure preserves continuityproperties,i.e.,a sequence of polygons obtained in this way belongs to the Lipschitz classof the same constant and exponent.As a consequence this also holds for all functions orcurves obtained as the limit of this procedure, such as the Bernstein polynomials,Bezierand spline parametric curves,etc.展开更多
The existing results of curve degree elevation mainly focus on the degree of algebraic polynomials. The paper considers the elevation of degree of the trigonometric polynomial, from a Bezier curve on the algebraic pol...The existing results of curve degree elevation mainly focus on the degree of algebraic polynomials. The paper considers the elevation of degree of the trigonometric polynomial, from a Bezier curve on the algebraic polynomial space, to a C-Bezier curve on the algebraic and trigonometric polynomial space. The matrix of degree elevation is obtained by an operator presentation and a derivation pyramid. It possesses not a recursive presentation but a direct expression. The degree elevation process can also be represented as a corner cutting form.展开更多
Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curv...Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an eliipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cu- bic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape pa- rameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be C2 N FC3 continuous for a non-uniform knot vector, and C3 or C5 continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for G1 continuous joining two trigonometric Bézier-like patches over triangular domain arededuced.展开更多
Unified and extended splines(UE-splines), which unify and extend polynomial, trigonometric, and hyperbolic B-splines, inherit most properties of B-splines and have some advantages over B-splines. The interest of this ...Unified and extended splines(UE-splines), which unify and extend polynomial, trigonometric, and hyperbolic B-splines, inherit most properties of B-splines and have some advantages over B-splines. The interest of this paper is the degree elevation algorithm of UE-spline curves and its geometric meaning. Our main idea is to elevate the degree of UE-spline curves one knot interval by one knot interval. First, we construct a new class of basis functions, called bi-order UE-spline basis functions which are defined by the integral definition of splines.Then some important properties of bi-order UE-splines are given, especially for the transformation formulae of the basis functions before and after inserting a knot into the knot vector. Finally, we prove that the degree elevation of UE-spline curves can be interpreted as a process of corner cutting on the control polygons, just as in the manner of B-splines. This degree elevation algorithm possesses strong geometric intuition.展开更多
文摘In this note we prove that the corner cutting procedure preserves continuityproperties,i.e.,a sequence of polygons obtained in this way belongs to the Lipschitz classof the same constant and exponent.As a consequence this also holds for all functions orcurves obtained as the limit of this procedure, such as the Bernstein polynomials,Bezierand spline parametric curves,etc.
基金Supported by the National Natural Science Foundation of China(61402201,11326243,61272300,11371174)the Jiangsu Natural Science Foundation of China(BK20130117)
文摘The existing results of curve degree elevation mainly focus on the degree of algebraic polynomials. The paper considers the elevation of degree of the trigonometric polynomial, from a Bezier curve on the algebraic polynomial space, to a C-Bezier curve on the algebraic and trigonometric polynomial space. The matrix of degree elevation is obtained by an operator presentation and a derivation pyramid. It possesses not a recursive presentation but a direct expression. The degree elevation process can also be represented as a corner cutting form.
基金We, wish to express our gratitude to the referees for their valuable re- marks for improvements. The research is supported by the National Natural Science Foun-dation of China (No. 60970097, No. 11271376), Postdoctoral Science Foundation of China (2015M571931), and Graduate Students Scientific Research Innovation Project of Hunan Province (No. CX2012Blll).
文摘Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an eliipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cu- bic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape pa- rameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be C2 N FC3 continuous for a non-uniform knot vector, and C3 or C5 continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for G1 continuous joining two trigonometric Bézier-like patches over triangular domain arededuced.
基金Project supported by the National Natural Science Foundation of China(Nos.60933008 and 61272300)
文摘Unified and extended splines(UE-splines), which unify and extend polynomial, trigonometric, and hyperbolic B-splines, inherit most properties of B-splines and have some advantages over B-splines. The interest of this paper is the degree elevation algorithm of UE-spline curves and its geometric meaning. Our main idea is to elevate the degree of UE-spline curves one knot interval by one knot interval. First, we construct a new class of basis functions, called bi-order UE-spline basis functions which are defined by the integral definition of splines.Then some important properties of bi-order UE-splines are given, especially for the transformation formulae of the basis functions before and after inserting a knot into the knot vector. Finally, we prove that the degree elevation of UE-spline curves can be interpreted as a process of corner cutting on the control polygons, just as in the manner of B-splines. This degree elevation algorithm possesses strong geometric intuition.